Abstract:
An example media processing device includes a coupler configured to transmit wireless signals to an encoding area, the coupler to transmit the wireless signals via a plurality of radiating elements; a controller to control which set of the radiating elements is to transmit the wireless signals; and a processor to adapt the coupler to a transponder configuration by: encoding a first transponder of the transponder configuration using the first set of the radiating elements to transmit the wireless signals; executing a first encoding evaluation on the encoded first transponder; encoding a second transponder of the transponder configuration using the second set of the radiating elements to transmit the wireless signals; executing a second encoding evaluation on the encoded second transponder; and selecting, based on the first and second encoding evaluations, the first set or the second set as a preferred radiating set for the transponder configuration.
Abstract:
A near-field coupling device that may facilitate communications with a transponder is provided. The near-field coupling device may include a ground plane, a dielectric substrate, one or more conductive strips and a terminating load. The conductive strips together with the ground planes form coupling elements. The near-field coupling device further includes one or more switching elements for selectively connecting and disconnecting the coupling elements with a transceiver. The connected coupling elements define a total characteristic impedance. Using the switching element, the ratio between the total characteristic impedance of the connected coupling elements and the terminating load may be changed in order to adjust the distribution of an electromagnetic field along the coupling elements according to the type and position of the transponder to be processed.
Abstract:
An RFID communication system comprising a near field coupler that is capable of selectively communicating with a targeted transponder positioned among a group of multiple adjacent transponders. The coupler is configured to receive communication signals from a transceiver and transmit the signals to a targeted transponder in a transponder operating region. The coupler includes a number of radiating elements spaced apart and a switching element. The switching element selectively couples one or more of the radiating elements to the transceiver. The coupled elements transmit the signals into the transponder operating region by emanating a near field effect. The pattern of the near field effect may be adjusted by changing the combination of the coupled radiating elements.
Abstract:
A RFID system and an associated antenna-coupler are provided. The system may be for selectively communicating with a targeted transponder from among a group of multiple adjacent transponders is provided. The system may include a transponder conveyance, a transceiver, and an antenna-coupler. The transponder conveyance is adapted to transport at least one targeted transponder from a group of multiple adjacent transponders through a transponder operating region. The transceiver is configured to generate one or more electrical signals. The antenna-coupler has first and second microstrips in a cross-like arrangement relative to each other. Each of the first and second microstrips is configured to transmit one or more electro-magnetic fields concentrated in a near-field region of the antenna-coupler based on the one or more electrical signals for communicating with the targeted transponder.
Abstract:
An encoding module and related systems and components are provided. The encoding module includes a plurality of encoding elements arranged in an array of columns and rows and one or more switching elements configured to selectively connect the encoding elements to a reader. The connection of the encoding elements may be based on the location of a targeted transponder disposed among multiple adjacent transponders to ensure the selective communication with the targeted transponder only. The module is configured for various types and locations transponders to be used within a system, such as a printer-encoder. Each encoding element may include a loaded conductive strip comprising a loop shape portion and a shield that corresponds to the loop shape portion. In another embodiment, an access control system having an encoding module with the plurality of couplers and an access card having a plurality of transponders corresponding to the couplers is provided.
Abstract:
An RFID system for selectively communicating with a targeted transponder from among a group of multiple adjacent transponders is provided. The RFID system may include a transponder conveyance system adapted to transport at least one targeted transponder from a group of multiple adjacent transponders through a transponder encoding area along a feeding direction and an antenna having a resonant inductor and a ferrite material, wherein the ferrite material at least partially covers the resonant inductor and defines an exposed portion of the resonant inductor. In one antenna-transponder alignment, the exposed portion extends substantially parallel to the feeding direction.
Abstract:
An example media processing device includes a coupler configured to transmit wireless signals to an encoding area, the coupler to transmit the wireless signals via a plurality of radiating elements; a controller to control which set of the radiating elements is to transmit the wireless signals; and a processor to adapt the coupler to a transponder configuration by: encoding a first transponder of the transponder configuration using the first set of the radiating elements to transmit the wireless signals; executing a first encoding evaluation on the encoded first transponder; encoding a second transponder of the transponder configuration using the second set of the radiating elements to transmit the wireless signals; executing a second encoding evaluation on the encoded second transponder; and selecting, based on the first and second encoding evaluations, the first set or the second set as a preferred radiating set for the transponder configuration.
Abstract:
An encoding module and related systems and components are provided. The encoding module includes a plurality of encoding elements arranged in an array of columns and rows and one or more switching elements configured to selectively connect the encoding elements to a reader. The connection of the encoding elements may be based on the location of a targeted transponder disposed among multiple adjacent transponders to ensure the selective communication with the targeted transponder only. The module is configured for various types and locations transponders to be used within a system, such as a printer-encoder. Each encoding element may include a loaded conductive strip comprising a loop shape portion and a shield that corresponds to the loop shape portion. In another embodiment, an access control system having an encoding module with the plurality of couplers and an access card having a plurality of transponders corresponding to the couplers is provided.
Abstract:
A system having a UHF RFID transceiver is adapted to communicate exclusively with a single electro-magnetically coupled transponder located in a predetermined confined transponder operating region. The system includes a near field coupling device comprising a plurality of lines connected in parallel with an unmatched load. The near field coupling device may be formed, for example on a printed circuit board with a plurality of electrically interconnected traces and a ground plane. The system establishes, at predetermined transceiver power levels, a mutual electro-magnetic coupling which is selective exclusively for a single transponder located in a defined transponder operating region. Also included are methods for selective communication with the transponder in an apparatus such as a printer-encoder.
Abstract:
A system having a UHF RFID transceiver is adapted to communicate exclusively with a single electro-magnetically coupled transponder located in a predetermined confined transponder operating region. The system includes a near field coupling device comprising a plurality of lines connected in parallel with an unmatched load. The near field coupling device may be formed, for example on a printed circuit board with a plurality of electrically interconnected traces and a ground plane. The system establishes, at predetermined transceiver power levels, a mutual electro-magnetic coupling which is selective exclusively for a single transponder located in a defined transponder operating region. Also included are methods for selective communication with the transponder in an apparatus such as a printer-encoder.