Abstract:
The present disclosure provides systems and methods for controlling gas-enrichment, e.g., oxygen-enrichment, therapy. One or more sensors and/or one or more imaging systems may be used to measure or determine one or more physiological parameters of the patient. Feedback regarding one or more physiological parameters or microvascular resistance may be provided for titrating or controlling the gas-enrichment therapy.
Abstract:
A system includes a heat exchange catheter line assembly configured to convey working fluid circulating to and from at least one heat exchange element on an intravascular heat exchange catheter. The system also includes a heat exchange system that itself includes a processor and is configured for fluidly communicating with the heat exchange catheter line assembly to exchange heat with the working fluid. A near filed communication (NFC) member associated with the heat exchange system and an NFC element associated with the heat exchange catheter line assembly are also included. The NFC member is configured to provide the processor with a signal representative of whether the NFC member detects the NFC element.
Abstract:
An intravascular heat exchange catheter has serpentine-like supply and return conduits circulating working fluid with a heat exchange system to warm or cool a patient in which the catheter is intubated.
Abstract:
A catheter has an inner sleeve through which refrigerant circulates to and from a source of refrigerant. The catheter also has an outer sleeve surrounding the inner sleeve, including a distal end thereof. The outer Sleeve is filled with a frozen biocompatible substance. The refrigerant is separated from the biocompatible substance by one or more walls of the inner sleeve such that the refrigerant is isolated from a patient in whom the catheter is positioned by both the inner sleeve and the frozen biocompatible substance. The refrigerant circulates through the catheter when the catheter is positioned in the patient to maintain the biocompatible substance frozen as heat is transferred from the patient to the biocompatible substance.
Abstract:
A patient temperature control catheter (10) includes working fluid supply (16) and return (18) lumens through which working fluid circulates to exchange heat with a patient in whom the catheter is positioned. At least one lumen is defined by plural coils (32) axially spaced from each other. At least a first coil is a large coil that inflates with working fluid to seat against a wall of a blood vessel in which the catheter is positioned, with blood flowing through the coil so as not to block blood flow in the vessel. Alternate centering structures (116) are disclosed.
Abstract:
A temperature management system controls a temperature of a body of a patient and determines a value indicative of a thermoregulatory activity of the patient. The system includes a heat exchange system configured to exchange heat with a body of a patient and to record operational data while controlling the temperature of the body of the patient. The temperature management system receives temperature data from a sensor, controls the heat exchange system to maintain the temperature of the body of the patient within a target temperature range, receives, in response to the controlling, operational data, determines, based on the temperature data and the operational data, a value indicative of a thermoregulatory activity of the patient, and generates, based on the value, an alert through the user interface indicating the thermoregulatory activity of the patient.
Abstract:
Methods and systems for delivering gas-enriched blood within a vasculature of a patient may include providing a gas-enrichment system, the gas-enrichment system comprising a mixing chamber and a blood pump. The process may include inserting a catheter for drawing blood from the patient into a radial artery of the patient. The process may include drawing blood from the radial artery or from a vessel upstream of the radial artery at a blood flow rate without collapsing the artery or vessel to a degree that would substantially impede drawing blood. The process may include generating a gas-enriched blood by mixing the withdrawn blood with a gas-enriched liquid in a mixing chamber. The process may include delivering the gas-enriched blood to the vasculature of the patient.
Abstract:
A catheter includes a working fluid supply path communicating with a source of working fluid. The catheter also includes a working fluid return path communicating with the working fluid supply path to return working fluid from the supply path to the source of working fluid. At least one of the paths is contained in a distal heat exchange region of the catheter, where the distal heat exchange region includes first and second helical paths and is made of a shape memory material.
Abstract:
A system includes a heat exchange catheter line assembly configured to convey working fluid circulating to and from at least one heat exchange element on an intravascular heat exchange catheter. The system also includes a heat exchange system that itself includes a processor and is configured for fluidly communicating with the heat exchange catheter line assembly to exchange heat with the working fluid. A near filed communication (NFC) member associated with the heat exchange system and an NFC element associated with the heat exchange catheter line assembly are also included. The NFC member is configured to provide the processor with a signal representative of whether the NFC member detects the NFC element.
Abstract:
A system includes a heat exchange catheter line assembly configured to convey working fluid circulating to and from at least one heat exchange element on an intravascular heat exchange catheter. The system also includes a heat exchange system that itself includes a processor and is configured for fluidly communicating with the heat exchange catheter line assembly to exchange heat with the working fluid. A near field communication (NFC) member associated with the heat exchange system and an NFC element associated with the heat exchange catheter line assembly are also included. The NFC member is configured to provide the processor with a signal representative of whether the NFC member detects the NFC element.