摘要:
Methods of forming a head assembly, a head assembly, and a linear tape drive are provided. One aspect provides a method of forming a head assembly including providing a base member; forming a plurality of head components upon the base member individually adapted to communicate information relative to a tape; providing a plurality of component regions adjacent respective ones of the head components and a path of travel of the tape; and providing a support region intermediate adjacent ones of the head components and positioned to support the tape moving along the path of travel, the support region comprising a material different than a material of the component regions.
摘要:
A servo head for magnetic tape is provided. The head includes a substantial planar head surface. The head includes a leading edge that is disposed adjacent to the head surface such that the tape contacts the leading edge before passing over the head surface. The leading edge includes a rounded portion so as to form an air bearing between the head surface and the tape. The leading edge can include an abrupt change in slope at the leading edge. Alternatively, the leading edge can include a smooth transition.
摘要:
A head design that reduces wear at the leading and trailing edges where the tape contacts the head while minimizing any adverse effects on the performance of the head. In one embodiment of the invention, a localized layer of wear resistant material is formed on the leading edge where the tape contacts the head before passing over the head recording surface. In a second embodiment, the leading edge is formed as wear resistant material embedded in the head structure adjacent to the recording surface. And, in a third embodiment, the leading edge is formed as a wear resistant material strip affixed to the side of the head structure. For each embodiment, the wear resistant material may also be applied in the manner described to the trailing edge where the tape may also contact the head after passing over the recording surface.
摘要:
A disk drive having a pair of axially spaced disks has a rotary actuator/head assembly in which a single rigid actuator arm projects between the axially spaced disks. A gimbal spring is mounted to each surface of the opposite surfaces at one distal end of the rigid actuator arm. Each gimbal spring mounts a slider having a magnetic head, the individual magnetic heads confronting the respective disk surfaces. The proximal ends of respective cantilever load springs are mounted to opposite surfaces of the rigid arm and their distal ends engage and spring bias the respective sliders against the respective disk surfaces. A printed circuit coil on one or both surfaces of the other distal end of the rigid actuator arm is the armature of an axial gap actuator motor, having a permanent magnet stator. Printed circuit traces mounted to the rigid actuator arm connect the printed circuit coil to bonding pads of a group of bonding pads on the rigid actuator arm at a location on the rigid actuator arm adjacent the axis of rotation. Other printed circuit traces mounted to the gimbal springs and to the rigid arm, connect the respective magnetic heads to other bonding pads of the group of bonding pads. Individual circuits of a flat flexible cable are connected to respective bonding pads for coupling electrical signals to and from said magnetic heads and for coupling bi-polar direct current to said printed circuit coil.
摘要:
A reflective color display has at least a color pixel disposed to receive ambient light for front lighting and has a light source optically coupled to the color pixel to provide back light for backlighting. The color pixel has a first sub-pixel and a second sub-pixel. The first sub-pixel has a first luminescent layer with a luminescent material for converting a portion of the ambient light spectrum into light of a first color. An unpatterned mirror is disposed under the luminescent layer of the first sub-pixel and extends through the first and second sub-pixels. The unpatterned mirror reflects at least light of the first color while transmitting the back light to the first luminescent layer for conversion by the first luminescent material into light of the first color.
摘要:
A display includes at least two stacked waveguides (110) and (120). A first waveguide (110) contains first luminophores that fluoresce to produce light of a first color. A second waveguide (120) overlying the first waveguide and contains second luminophores that fluoresce to produce light of a second color. A light collection structure (180) transmits light from a surrounding environment transversely through the first and second waveguides (110, 120) and optical vias (172, 174) provide optical paths out of the display for light respectively from the first optical waveguide (110) and the second optical waveguide (120).
摘要:
A luminescent layer includes a series of down-converting luminophores dispersed in a matrix to collect ambient light energy over a range of wavelengths longer than a desired color band and a set of up-converting luminophores dispersed in the matrix. The series of down-converting luminophores transfer the ambient light energy to the set of up-converting luminophores, and the set of up-converting luminophores emits at least a portion of the ambient light energy in the desired color band.
摘要:
A batch fabrication technique is described that increases the manufacturing efficiency of servo write heads and also improves servo pattern definition for fine features, while reducing tape and head wear. Multiple heads are fabricated as a batch from one or more ferrite wafers. A nominally flat, large wafer surface and a contour suitable for uniform photoresist application an planar photolithography permit fine servo pattern definition with low linewidth variation. Non-magnetic material is photolithographically defined to produce gaps above a spacer. The non-magnetic material may be photoresist, semiconductor materials, glass, metal or the like. The material may even be removed later to leave air gaps. Additionally, a lower ferrite wafer may be mated to the upper ferrite wafer to complete a magnetic circuit around the gaps. A rounded leading edge on the head creates an air bearing to reduce ware of the tape and of the head. The leading edge is rounded to form an air bearing between the head surface and the tape. Rounding of the leading edge can be accomplished by a variety of methods including blending, grinding, and faceting.
摘要:
A head design that reduces wear at the leading and trailing edges where the tape contacts the head while minimizing any adverse effects on the performance of the head. In one embodiment of the invention, a localized layer of wear resistant material is formed on the leading edge where the tape contacts the head before passing over the head recording surface. In a second embodiment, the leading edge is formed as wear resistant material embedded in the head structure adjacent to the recording surface. And, in a third embodiment, the leading edge is formed as a wear resistant material strip affixed to the side of the head structure. For each embodiment, the wear resistant material may also be applied in the manner described to the trailing edge where the tape may also contact the head after passing over the recording surface.
摘要:
A disk-drive-compatible magnetic tape cartridge is provided with a tape guide for accurately positioning a magnetic tape in relation to a disk drive head. The tape guide includes a positioning section to be aligned with a rotation axis of a center core assembly when the center core assembly is chucked on a turntable of the disk drive. The tape guide also includes a guide section defining a tape run path across the disk drive head. The guide section is formed integrally with the section to be aligned with the center core assembly and so distanced from the latter as to accurately position the magnetic tape with respect to the disk drive head. Since the tape guide has the positioning section and guide section integrally, the distance therebetween can be maintained precisely constant. Therefore, tracking by the disk drive head becomes easier to allow high-density recording.