摘要:
New and improved applications of Raman Scattering are disclosed. These applications may be implemented with or without using an enhanced nano-structured surface that is trademarked as the RamanNanoChip™ disclosed in a pending patent. As a RamanNanoChip™ provides much higher sensitivity in SERS compared with conventional enhance surface, broader scopes of applications are now enabled and can be practically implemented as now disclosed in this application. Furthermore, a wide range of applications is achievable as new and improved Raman sensing applications. By applying the analysis of Raman scattering spectrum, applications can be carried out to identify unknown chemical compositions to perform the tasks of homeland security; food, drug and drinking materials safety; early disease diagnosis; environmental monitoring; industrial process monitoring, precious metal and gem authentications, etc.
摘要:
A fiber optical circulator in which is a light beam is fed from a fiber of a first port in a dual core glass capillary, then collimated before being passed to a birefringent crystal wherein the light beam is divided into two orthogonal components o and e with a displacement. The State of Polarization (SOP) of components then are changed into the same, perpendicular to the incident plane of the birefringent crystal prism by the group of Faraday Rotator and two Half-Wave Plates (HWP) that have different optical axis orientation and cover o and e components respectively. Then the light components with the same SOP pass into a birefringent prism where they receive angle correction to meet receiving requirement in incident angle for the fiber of port 2 without displacement due to their SOP. This is followed by a second group of HWP and Faraday Rotator that changes the SOP of two components back to orthogonal. The light beam of components then pass into the second birefringent crystal which combines the o and e components together and pass through collimator lens, and are received by optical fiber of the second port. The optical path from the second port to the third port is similar to that described above. However, due to the non-reciprocal property of the Faraday Rotator, the SOP of the two light components from the second port will be in the incident plane of the crystal prism, therefore receive a displacement after the birefringent crystal prism. This displacement combined with angle correction allows the light from the second port is fed into the fiber of the third port. An alternative design uses a pair of glass prism and a plane crystal to replace the function of crystal prism in the preferred embodiment.
摘要:
A fiber optical circulator wherein optical fibers of three ports share one glass capillary, one collimator lens and one walk-off crystal. Three optical fibers lie on a plane in a glass capillary that is aligned with a collimator lens concentrically. A light fed into the fiber of port 1, which is off optical axis of collimator lens, is collimated with an angle &thgr; to the axis of collimate lens. The collimated beam is divided into two orthogonal components by a first crystal. A device group consisting of one Faraday rotator and one pair of Half Wave Plates transfers the State Of Polarization (SOP) of two components into the same. The angled part of a combined prism bent both beams to be parallel to optical axis of system. The lights pass through a second crystal without displacement due to their SOP. Their SOP receive 90° rotations by a round trip in followed Faraday rotator with help of a reflection film on the backside or a mirror. The light components receive a displacement onto optical axis after the second crystal due to their rotated SOP, pass through the flat part of combined prism, changes their SOP with help of the group of Rotator and wave plate, combined into one beam by the first crystal, and is focused into the fiber of port 2 by collimate lens. The process of port 2 to port 3 is similar to above. The light fed into fiber of port 2 is collimated to be parallel to the optical axis. The collimated beams pass though all parts then reflected by the reflection film or mirror. The light beam in return path receives a displacement by the second crystal and bending angle by the angled part of combined prism. The light is finally focused into the fiber of port 3 by the collimate lens. Since this circulator requires less optical parts, it achieves compact size and low cost simultaneously.
摘要:
A micro structure for sensing a substance using light scattering includes a substrate, a first layer on the substrate, wherein the first layer comprises a metallic material, a second layer over the first layer, and a mask layer over the second layer. A plurality of nano holes are formed through the mask layer and the second layer, wherein the plurality of holes are defined in part by internal surfaces on the second layer and the mask layer. Two or more structure layers are formed on the mask layer and the internal surfaces in the plurality of holes. The two or more structure layers comprise different material compositions.
摘要:
New and improved applications of Raman Scattering are disclosed. These applications may be implemented with or without using an enhanced nano-structured surface that is trademarked as the RamanNanoChip™ disclosed in a pending patent. As a RamanNanoChip™ provides much higher sensitivity in SERS compared with conventional enhance surface, broader scopes of applications are now enabled and can be practically implemented as now disclosed in this application. Furthermore, a wide range of applications is achievable as new and improved Raman sensing applications. By applying the analysis of Raman scattering spectrum, applications can be carried out to identify unknown chemical compositions to perform the tasks of homeland security; food, drug and drinking materials safety; early disease diagnosis environmental monitoring; industrial process monitoring, precious metal and gem authentications, etc.
摘要:
This invention discloses an optical interleaver that includes a first collimating lens for collimating an input optical signal into collimated beams and a second collimating lens for focusing the collimated parallel beams into an output optical fiber. The interleaver further includes a phase delay difference generating means for generating a phase-delay difference between portions of the collimated parallel beams for generating an interference in the second collimating lens for selectively enhance signal transmission of certain wavelengths. In a preferred embodiment, the phase delay difference generating means comprising a glass plate blocking a portion of the collimated parallel beams for generating a phase delay for a portion of the collimated parallel beams passing therethrough. In another preferred embodiment, the phase delay difference generating means comprising a glass plate having an upper portion covering an upper portion of the collimated parallel beams. The glass plate having a lower portion covering a lower portion of the collimated parallel beams for generating a phase delay difference between the upper portion and lower portion of the collimated parallel beams. In another preferred embodiment, the interleaver further includes a control means for controlling the phase delay difference generating means for selectively generating signal transmission at different wavelengths according to the interference generated in the second collimating lens.
摘要:
This invention discloses a dual fiber optical component that includes a first holding tube for containing and holding a dual fiber capillary and a collimator lens. The dual fiber capillary has first optical fiber and a second optical fiber with the first optical fiber transmits an input light beam for projecting through the collimator lens as a collimated beam. The dual fiber component further includes a second holding tube containing and holding an optical filter for receiving the collimated beam from the collimator lens. The filter further projecting a portion of the collimated beam back through the collimator lens for transmitting to the second optical fiber of the dual fiber capillary. The first holding tube has a first interface tube end forming with a convex spherical profile and the second holding tube has a second interface tube end forming with a concave spherical profile corresponding to the convex spherical profile of the first interface tube end.
摘要:
A micro structure for sensing a substance using light scattering includes a substrate, a first layer on the substrate, wherein the first layer comprises a metallic material, a second layer over the first layer, and a mask layer over the second layer. A plurality of nano holes are formed through the mask layer and the second layer, wherein the plurality of holes are defined in part by internal surfaces on the second layer and the mask layer. Two or more structure layers are formed on the mask layer and the internal surfaces in the plurality of holes. The two or more structure layers comprise different material compositions.
摘要:
New and improved applications of Raman Scattering are disclosed. These applications may be implemented with or without using an enhanced nano-structured surface that is trademarked as the RamanNanoChip™ disclosed in a pending patent. As a RamanNanoChip™ provides much higher sensitivity in SERS compared with conventional enhance surface, broader scopes of applications are now enabled and can be practically implemented as now disclosed in this application. Furthermore, a wide range of applications is achievable as new and improved Raman sensing applications. By applying the analysis of Raman scattering spectrum, applications can be carried out to identify unknown chemical compositions to perform the tasks of homeland security; food, drug and drinking materials safety; early disease diagnosis environmental monitoring; industrial process monitoring, precious metal and gem authentications, etc.
摘要:
A micro structure includes a silicon substrate, an adhesion layer on the silicon substrate, a bias layer on the adhesion layer, and structure layers on the adhesion layer. The two or more structure layers comprise different material compositions and a plurality of holes through at least two of the structure layers. Widths of the plurality of holes are in the range of 0.5-500 nm.