Abstract:
The invention describes the solid-state image sensor array and in particular describes in detail the junction gate BCMD pixel sensor array that can be used in the back side illuminated mode as well as in the front side illuminated mode. The pixels generally do not need addressing transistors and the reset is accomplished in a vertical direction to the junction gate, so no additional reset transistor is needed for this purpose. As a result of this innovation the pixel maintains large charge storage capacity when its size is reduced, has low noise due to the nondestructive charge readout, and no RTS noise. The pixel interface generated dark current is also drained to the gate, so the image sensor array operates with very low dark current noise even at high temperatures. The junction gate also serves as a drain for the overflow charge.
Abstract:
Methods for forming backside illuminated (BSI) image sensors having metal redistribution layers (RDL) and solder bumps for high performance connection to external circuitry are provided. In one embodiment, a BSI image sensor with RDL and solder bumps may be formed using a temporary carrier during manufacture that is removed prior to completion of the BSI image sensor. In another embodiment, a BSI image sensor with RDL and solder bumps may be formed using a permanent carrier during manufacture that partially remains in the completed BSI image sensor. A BSI image sensor may be formed before formation of a redistribution layer on the front side of the BSI image sensor. A redistribution layer may, alternatively, be formed on the front side of an image wafer before formation of BSI components such as microlenses and color filters on the back side of the image wafer.
Abstract:
A light-based input device may be based on a wedge-shaped light-guide structure. Light may be introduced into the interior of the light-guide structure from a light source and corresponding reflected light exiting the light-guide structure may be measured using a light detector such as an image sensor. The location at which a user places an object in contact with an upper surface of the light-guide structure may be detected by analyzing the pattern of reflected light that exits the light-guide structure. Multiple layers of light-guide structures may be separated from each other by opaque material such as plastic so that the device can determine the direction in which the object is traversing the light-guide layers. A light-based input device may be implemented using free-space light beams that are interrupted by the user. Keys may be provided in a light-based input device by movably mounting contact pads to a light-guide structure.
Abstract:
Electronic devices may include camera modules. A camera module may include an array camera having an array of lenses and a corresponding array of image sensors. The array of image sensors may include a monochromatic image sensor such as a green image sensor and a polychromatic image sensor such as a red and blue image sensor.The red and blue image sensor may include a color filter array of red and blue color filter elements formed over an array of image pixels. The red and blue color filter elements in the polychromatic image sensor may be arranged in a checkerboard pattern, a zigzag pattern that extends vertically from the top of the pixel array to the bottom of the pixel array, or a diagonal strip pattern. The electronic device may include processing circuitry for combining monochromatic images from the monochromatic image sensor with polychromatic images from the polychromatic image sensor.
Abstract:
Systems and methods are provided for an adjustable filter engine. In particular, an electronic system is provided that can include a focus module, memory, and control circuitry. In some embodiments, the focus module can include an adjustable filter engine and a motor. By using the adjustable filter engine to generate a filter with a large number of filter coefficients, the control circuitry can accommodate a variety of system characteristics. For example, by generating a set of cumulative coefficients and re-arranging the order of the cumulative coefficients, the control circuitry can reduce the bit-width requirements of the adjustable filter engine hardware. For instance, the control circuitry can reduce the number of multipliers required to perform a convolution between an updated filter and one or more input signals. In some embodiments, the updated filter can be generated to reduce oscillations of the motor movement due to a new position request.
Abstract:
A light-based input device may have multiple branches each based on a respective light-guide structure. A light source may launch light into the light-guide structures. A light sensor may detect light reflected from the light-guide structures or transmitted through the light-guide structures. The light-based input device may be used to gather user input from a user of an electronic device. The user may move an object into contact with the light-guide structures. The light sensor may monitor light intensity fluctuations from the light-guide structures to determine where the light-guide structures have been contacted by the object. Multiple wavelengths of light may be used by the light source and light sensor to reduce crosstalk between adjacent branches of the light-based input device.
Abstract:
An image sensor may have an array of image sensor pixels arranged in unit pixel cells each having at least one modified clear image pixel. Each modified clear image pixel may include a modified clear color filter element formed from a transparent material such as an oxide material that is modified with a colored pigment or colored dye such as yellow pigment. Each unit pixel cell may include one or more color pixels of other colors such as red pixels, blue pixels, and green pixels. Image signals such as yellow image signals from the modified clear pixels may be processed along with other color image signals such as red image signals and blue image signals to generate standard red, green, and blue image data. Image processing operations may include chroma demosaicing or point filtering of the image signals from the modified clear image pixels.
Abstract:
A backside illumination (BSI) image sensor pixel that includes microlenses with elevated refractive indices is provided. The image sensor pixel may include a photodiode formed in a silicon substrate, a first microlens formed in a back surface of the substrate, a second microlens formed over a front surface of the substrate, a dielectric stack formed on the front surface of the substrate, and a reflective structure formed in the dielectric stack above the second microlens. The first microlens may be fabricated by forming shallow trench isolation structures in the back surface. The second microlens may be fabricated by depositing polysilicon on the front substrate of the substrate. The first microlens may serve to concentrate light towards the photodiode, whereas the second microlens may serve to collimate light that traverses through the substrate so that light exiting the second microlens will reflect off the reflective structure and back into the photodiode.
Abstract:
Image sensor pixels are provided having junction gate photodiodes. A group of pixels may have a shared floating diffusion region and a shared source-follower transistor. The source-follower transistor may be a JFET source-follower with a gate that forms the floating diffusion region. The JFET source-follower may be a vertical or lateral JFET. A reset diode may be forward-biased to reset the floating diffusion region. Each pixel may have a JFET that serves as a charge transfer barrier between the junction gate photodiode and the floating diffusion region. The charge transfer barrier JFET may be a lateral JFET. The image sensor pixels may be formed without any metal-oxide-semiconductor devices.
Abstract:
An imaging system may include an array of lenses, each of which is aligned over a respective one of a plurality of imaging pixels. The array of lenses may be formed in two layers. The first layer may include a first set of non-adjacent lenses and centering structures between the first lenses. The centering structures may be aligned with the first set of lenses as part of a mask design with a high level of accuracy. The second layer may include a second set of lenses, each of which is formed on a respective one of the centering structures. Forming the second set of lenses may include a reflow process in which surface tension forces center the second set of lenses on their respective centering structures, thereby aligning the second set of lenses with the first set of lenses with a high level of accuracy.