Abstract:
A shoe sole comprising an elastomeric composition comprising: (D) 100 phr of a mixture of rubbers comprising: i. from 40 to 70% by weight of an isoprene polymer; ii. from 20 to 50% by weight of polybutadiene; iii. from 10 to 40% by weight of an SBR having a glass transition temperature (Tg) from −60 to −40° C.; (E) from 50 to 100 phr of amorphous carbon black having a surface area greater than 85 m2/g measured with the ASTM D6556 method, and a dibutyl phthalate absorption index (DBPA) greater than 90 measured with the ASTM D2414 method; (F) from 1 to 30 phr of graphene nano-platelets, wherein at least 90% of said graphene nano-platelets has a side dimension (x, y) from 50 to 50000 nm and a thickness (z) of 0.34 to 50 nm, and wherein said graphene nano-platelets have a C/O ratio ≥100:1.
Abstract:
Elastomeric composition for producing tire components comprising, based upon parts by weight per 100 parts by weight of rubber (phr): (A) 100 phr of a blend of rubber comprising at least 20% by weight of an isoprene polymer; (B) from 0 to 30 phr of silica; (C) from 0 to 50 phr of amorphous carbon black; (D) from 1 to 40 phr of graphene, wherein the graphene consists of graphene nanoplatelets, wherein at least 90% have a lateral size (x, y) from 50 to 50000 nm and a thickness (z) from 0.34 to 50 nm, wherein the lateral size is always greater than the thickness (x, y>z), and wherein the C/O ratio is ≥100:1.
Abstract:
A flame retardant composition comprising graphene nanoplatelets and a condensation product of a sulfonated aromatic compound with formaldehyde, wherein the w/w ratio between the graphene and the condensation product is in the range of 1:15 to 4:1. The composition may be in the form of a water dispersion applied to the surface of the article to be treated.The composition has optimal flame retardant properties even when applied in relatively modest quantities.
Abstract:
Use of a textile article containing graphene to produce a bandage to be applied on wounds, wherein said graphene comprises graphene nano-platelets in which at least 90% has a lateral dimension (x, y) from 500 to 50000 nm and a thickness (z) from 0.34 to 50 nm, and wherein said textile article comprises from 0.01 to 20 g of said graphene per square meter.
Abstract:
Method for making a thermally and electrically conductive coating on natural or synthetic leather comprising the deposition of several layers based on aliphatic polyurethanes, with an intermediate layer, having a thickness from 10 to 50 μm, comprising graphene nano-platelets, wherein at least 90% has a lateral dimension (x, y) from 50 to 50000 μm and a thickness (z) from 0.34 to 50 nm, and wherein the C/O ratio is ≥100:1.
Abstract:
Devices and methods are presented that comprise graphene platelets with controlled dimension and high carbon to oxygen ratio, and that further include a heteroatom or heteroionic species, an alkylammonium polysulfide, or both, preferably non-covalently bound to the graphene platelets. Such compositions have significantly improved conductive properties as opposed to unmodified graphene platelets and can be easily produced at mass quantities and low cost.
Abstract:
Golf ball consisting of an inner part comprising at least an elastomeric polymer and a reinforcing agent comprising graphene nano-platelets in which at least 90% of the nano-platelets has a lateral size (x, y) from 50 to 50,000 nm and a thickness (z) from 0.34 to 45 nm, and a C/O ratio ≥100:1.
Abstract:
Process for producing graphene nanoplatelets, comprising expanding flakes of intercalated graphite and collection of the same in a dispersing medium with forming of a dispersion that is subjected to exfoliation and size reduction treatment carried out by high pressure homogenization in a high shear homogenizer. A dispersion of graphene is obtained in the form of nanoplatelets, at least 90% of which have a lateral size (x, y) from 50 to 50,000 nm and a thickness (z) from 0.34 to 50 nm.
Abstract:
A flame retardant composition comprising graphene nanoplatelets and a condensation product of a sulfonated aromatic compound with formaldehyde, wherein the w/w ratio between the graphene and the condensation product is in the range of 1:15 to 4:1. The composition may be in the form of a water dispersion applied to the surface of the article to be treated.The composition has optimal flame retardant properties even when applied in relatively modest quantities.
Abstract:
Concentrated dispersion from 5 to 50% by weight of nanoparticles of graphene in water with a lateral size from 10 to 5000 nm and thickness from 0.34 to 30 nm. The production process comprises the dispersion in water of flakes of expanded graphite and the subsequent treatment with ultrasounds at an energy level of from 100 to 2000 W for a period from 1 to 100 hours.