Abstract:
An analysis system for an aviation radiation dose according to the present invention includes: a proton spectrum generator which calculates a galactic cosmic ray incident on the Earth's atmosphere and a proton spectrum corresponding to a solar proton event; a global radiation dose map producer which calculates particle transport based on the proton spectrum and produces a radiation dose map; a global radiation dose map converter which converts the radiation dose map produced based on a standard atmosphere into a radiation dose map corresponding to current atmosphere conditions in real time; and a database in which data necessary for operations of the proton spectrum generator, the global radiation dose map producer and the global radiation dose map converter is previously calculated and stored, thereby having an effect on estimating a radiation dose of another route if another piece of information about an arbitrary path and time is given besides a previous given path.
Abstract:
A space weather monitoring system for polar routes includes: a satellite which flies over polar routes; a route-information providing server which receives data collected by the satellite monitoring the polar routes and generates various pieces of information about space weather; a flight vehicle which makes a request for information about the polar routes of the flight to the route-information providing server, and flies over the polar routes based on the received information; and a network which relays data among the satellite, the route-information providing server and the flight vehicle, so that an aurora-distribution map needed for an aircraft flight, an electromagnetic wave absorption map based on the ionosphere, information about space weather, and the situation and forecast of the space weather can be provided to an airline, thereby having effects on allowing the airline to check the information about the space weather in real time and fully considering a user who is unfamiliar to the space weather.
Abstract:
An optoelectric control apparatus for a satellite laser ranging system comprises a communication controller for externally receiving optoelectric control data. Memory is connected to the communication controller and stores a round trip distance to a satellite. A laser generation control unit is connected to the communication controller and outputs a laser fire signal. A signal measurement unit receives a laser start time. A real-time conversion unit is connected to the signal measurement unit and the communication controller, and converts a predicted laser arrival time into real time. A Lagrange interpolation processor is connected to the real-time conversion unit and the memory, and calculates a time at which laser light fired by a laser transmission unit returns back to a laser reception unit (laser arrival time). The clock unit is connected to a time measurement unit, the real-time conversion unit, a register unit, and a delay unit, and outputs time information.
Abstract:
An optical device includes a body tube having an open end; a main reflector mounted to the other end opposite to the open end via an inner space of the body tube; a secondary reflector provided in the body tube to enable a light reflected by the main reflector incident thereon; a splitter arranged between the main reflector and the secondary reflector to enable a light reflected toward the inner space of the body tube by the secondary incident thereon, the splitter configured to divide the light incident thereon into a light at a visible wavelength range and a light at an infrared ray wavelength range; a visible ray analysis unit configured to read the light at the visible wavelength range incident from the splitter; and an infrared ray analysis unit configured to read the light at the infrared ray wavelength range incident from the splitter.
Abstract:
A mode conversion apparatus includes a first freeform-surface mirror to reflect incident light provided from a front-end optical system and output the reflected light in a first direction, and a second freeform-surface mirror to reflect the reflected light and output mode-converted light in a second direction where surface shapes of the first and second mirrors are determined based on a freeform-surface coefficient determined by at least five optical parameters of a distance from the first mirror to a confocal point of the first mirror and the second mirror, a distance from the confocal point to the second mirror, a distance from a waist of the incident light to the first mirror, a distance from the second mirror to a waist of the mode-converted light, and an incident angle of the incident light for the first mirror and an incident angle of the reflected light for the second mirror.
Abstract:
The present invention relates to a beam steering device of a phased array antenna for reducing a grating lobe, and more particularly, to a beam steering device of a phased array antenna for reducing a grating lobe so that grating lobes generated when receiving a signal by rotating an array of a plurality of antenna elements at a predetermined angle during transmission do not overlap each other when receiving the signal through the beam steering device.
Abstract:
A method for re-entry prediction of an uncontrolled artificial space object includes: calculating an average semi-major axis and an argument of latitude by inputting two-line elements or osculating elements of an artificial space object at two different time points; calculating an average semi-major axis, argument of latitude, and atmospheric drag at a second time point; estimating an optimum drag scale factor while changing the drag scale factor; predicting the time and place of re-entry of an artificial space object into the atmosphere by applying the estimated drag scale factor. Here, orbit prediction is performed by using a Cowell's high-precision orbital propagator using numerical integration from the second time point to a re-entry time point.
Abstract:
A method of determining a precise orbit of a satellite through estimation of a parallactic refraction scale factor is proposed, the method including inputting an initial estimate including initial orbit information of a satellite with respect to an observation epoch and the parallactic refraction scale factor; performing orbit propagation using a high-precision orbit propagator by applying a dynamics model; performing observer-centered satellite optical observation modeling including the parallactic refraction scale factor; calculating an observation residual between actual optical observation data and observation data calculated via the observation modeling reflecting the parallactic refraction; and precisely determining the orbit of the satellite by estimating the parallactic refraction scale factor and a satellite state vector using a batch least square estimation algorithm.
Abstract:
The present invention makes it possible to measure a precision event time in such a way to make a reference data in accordance with a standard time reference frequency signal and to make a measurement data by using an apparatus with the same structure as a reference data with respect to a signal to be measured and to compare the measurement data with a reference data, whereby temperature effects can be minimized by making the time changes due to temperature changes occurring between two apparatuses happen equally, by providing the same structure and parts to a reference signal circuit apparatus for an event time measurement and a signal circuit apparatus to be measured, and the zero point adjustment is performed during the real time operation, so the system is not needed to stop.
Abstract:
A satellite tracking system and a method of controlling the same, in which the satellite tracking system comprises an ARGO-M Operation System (AOS) and a Tracking Mount System (TMS). The AOS comprises a time & frequency system configured to include a Global Positioning System (GPS) receiver, and to receive Universal Time Coordinated (UTC), and an Interface Control System (ICS) configured to calculate the orbital position data of a satellite using the UTC and per-satellite estimated orbit data by means of Lagrangian interpolation, and to send a command to track the position of the satellite. The TMS comprises a tracking mount configured to support a telescope that measures distance to the satellite, and to operate in accordance with the position of the satellite, and a servo controller configured to receive the orbital position data of the satellite, to receive the UTC, and to send a command to track the satellite.