摘要:
A time measurement device measures a time interval between input timings of first and second pulsed target signals. The device includes: a processor; a number-of-periods detector that detects, by using a clock signal with a predetermined clock frequency and a predetermined clock period, the time interval in units of the clock period; and a phase detection unit including a band-pass filter. The band-pass filter receives at least one of the first and second target signals as a filtering target signal and extracts a signal component of the clock frequency from the filtering target signal. The phase detection unit detects a phase difference between the extracted signal and the clock signal. The processor derives, by using a result detected by the number-of-periods detector and the detected phase difference, the time interval at a resolution finer than the clock period.
摘要:
A comparator includes a first voltage-time conversion circuit, a second voltage-time conversion circuit, and a determination circuit. A first delay unit includes a first falling edge delay circuit that delays a falling edge based on a first input signal, a first rising edge delay circuit that delays a rising edge based on a second input signal, and a first output circuit. A second delay unit includes a second falling edge delay circuit that delays a falling edge based on the second input signal, a second rising edge delay circuit that delays a rising edge based on the first input signal, and a second output circuit.
摘要:
A time measurement device measures a time interval between input timings of first and second pulsed target signals. The device includes: a processor; a number-of-periods detector that detects, by using a clock signal with a predetermined clock frequency and a predetermined clock period, the time interval in units of the clock period; and a phase detection unit including a band-pass filter. The band-pass filter receives at least one of the first and second target signals as a filtering target signal and extracts a signal component of the clock frequency from the filtering target signal. The phase detection unit detects a phase difference between the extracted signal and the clock signal. The processor derives, by using a result detected by the number-of-periods detector and the detected phase difference, the time interval at a resolution finer than the clock period.
摘要:
A method for measuring a period of time between a first event and a second event via a hardware counter 2 and of a software counter 3. A digital counter 1 using such a method is also described.
摘要:
An electronic circuit delay measurement device that includes: a delay section configured by a loop that reduces a pulse width of an input pulse by a specific reduction time and outputs the pulse, and that is connected such that the output pulse is employed as input; a pulse output section that is provided in the delay section loop, and that outputs a pulse of pulse width determined according to a delay time of an electronic circuit of a delay time measurement target when provided with a signal for starting a delay measurement, and that, for a pulse that has been input, outputs a pulse of pulse width determined according to the delay time of the electronic circuit; and a counting section that counts a pulse number of pulses output from the pulse output section.
摘要:
A method for measuring time includes setting a clock mask by a starting signal and an ending signal generated upon commencement of measurement and termination of measurement, respectively; obtaining a cycle number of a reference signal under the clock mask to calculate a preliminary time; correcting the preliminary time according to a plurality of phase shift signals generated based on the reference signal; and minimizing an error of the preliminary time by increasing the quantity of the phase shift signals. The method enhances the accuracy of the measured time, times up time measurement, and reduces the required circuit areas. A system for measuring time is further introduced for use with the method.
摘要:
A method for measuring distance involves calculating a distance based on light speed and a time taken by an optical signal to travel to an object and return therefrom. The method includes calculating a time based on a cycle number of a reference signal under a clock mask synchronized with emission and reception of the optical signal; correcting the time according to a plurality of phase shift signals generated based on the reference signal; and minimizing an error of the time by increasing the quantity of the phase shift signals. The method enhances the accuracy of the measured time taken by an optical signal to travel to an object and return therefrom, speeds up measurement, and reduces the required circuit areas. A system for measuring distance is further introduced for use with the method.
摘要:
A high-precision distance measuring with a reduced error in a distance measuring system which calculates a distance from an arrival time of each pulse signal constituting a pulse sequence is provided. For an oscillator which generates pulse signals by counting the number of pulse signals constituting a received pulse sequence, a relative time difference between a transmitting device and a return device is acquired, a distance from the transmitting device to the return device is calculated, and the calculated distance is corrected based on the calculated relative time difference.
摘要:
A mechanism provides accurate time-based counters for scaling operating frequencies of microprocessors. The mechanism makes use of a time-based counter circuit configuration in which a fixed frequency clock is derived from a PLL of the clock generation circuit of the microprocessor and is used to feed the external and internal timebase logic as well as a timebase accumulator counter. The timebase accumulator counter accumulates the tick events from the timebase logic between two core clocks. The accumulated value is transferred to the core clock domain on every clock edge of a scalable clock and the accumulator is then reset. Because the accumulated ticks are transferred to the core clock domain before the accumulator is reset, no ticks are ever lost using the circuitry of the illustrative embodiment.