Abstract:
Adjusting current based on temperature. A change in temperature of a connection between a first device and a second device may be measured. The change in temperature may be performed while the first device provides current to the second device over the connection. If the change in temperature is above a threshold, the current being provided from the first device to the second device may be reduced. The change in temperature may be performed by the first device and/or the second device, e.g., by measuring the temperature of a connector of the connection.
Abstract:
Various techniques are provided to facilitate a detection system to detect a presence of an externally coupled receiver device, such as a universal serial bus (USB) device. In one example, the system generates a reference current and passes the reference current via a conductor to a shared buffer circuit. The shared buffer circuit is adapted to selectively pass the reference current or a communication signal to the externally coupled receiver device. The system switches between a detect mode where the reference current is provided to the externally coupled receiver device and between a communicate mode where the reference current is blocked and the communication signal is provided to the externally coupled receiver device. The system monitors a voltage value of the conductor and the system monitors a time for the voltage value to reach a pre-determined threshold value in response to the reference current. The system detects a presence of the externally coupled receiver device based on the monitored time.
Abstract:
System and method controlling connectivity within a device. A device may be coupled to a host device. In response to the coupling, low power logic (e.g., an embedded device) of the device may be coupled to the host device. The low power logic may perform enumeration with the host device using only power provided by the host device. The low power logic may also charge a battery of the device using power provided by the host device. Device circuitry of the device may provide a signal for coupling to the host device. In response, the device circuitry may be coupled to the host device and may perform device enumeration with the host device.
Abstract:
Systems and methods are disclosed for improving the accuracy of phase spacing of multiphase clocks. In one example, method includes receiving a reference clock having a first frequency and sampling the reference clock with a plurality of multiphase clocks having a second frequency to generate a plurality of samples. The second frequency is a non-integer multiple of the first frequency. The method also includes detecting transitions of the reference clock occurring between the samples generated from a plurality of pairs of the multiphase clocks and counting the transitions to generate a transition count for each pair of the multiphase clocks. The method also includes summing a set of the transition counts to generate a measured phase for a first multiphase clock, calculating a reference phase for the first multiphase clock, and generating a phase skew value for the first multiphase clock based on the measured phase and the reference phase.
Abstract:
A reference time distribution system and method use a data transmission network having a plurality of nodes to distribute the House Sync signal. A network-wide time signal is generated using a reference time generator, and the network-wide time signal is then distributed over the network to the plurality of nodes. At each node, the network-wide time signal is converted to a local synchronization signal for use in performing synchronization of the timing of each node. Either network-inherent timing and/or additional time signaling is used to provide the nodes attached to this network with a network-wide notion of time. The time information is converted locally into synchronization signals or time information as required by a respective application. When data is transported over the network, delay compensation is performed to simultaneously output different data streams that have been synchronously input into the network, regardless of the data path.
Abstract:
Transmit power control functionality in wireless audio systems may be implemented by way of a Transmit Power Control (TPC) algorithm devised to control power for both source and sinks in a multi sink session, to reduce power consumption. Information may be passed back and forth between the source and sink devices to adjust power based on the shared information. The TPC algorithm may allow power control on both ends of an RF link, and may have multiple sink devices communicating with a source device. Furthermore, the multiple sink devices and the source device may each be operating at different power levels, and adjust their respective power levels as instructed by the TPC algorithm. Power control is therefore implemented on both ends of the link, where multiple sources and sinks may all operate at different power levels, and all individually adjust their respective power levels.
Abstract:
An optical receiver, within a first device, may receive first configuration information from an optical transmitter, also within the first device. While receiving the first configuration information, the optical receiver may operate according to a clock. Later, the optical receiver may receive optical data from a second device according to the first configuration. While receiving the optical data from the second device, the optical receiver does not operate according to the clock, wherein the optical receiver not operating according to the clock allows the optical receiver to receive the optical data with greater sensitivity.
Abstract:
Various techniques are provided to support efficient data transfers over serial data streams. In one example, a serial device may be used to efficiently transfer data between a host device and the serial device over a data stream of a serial interface. A data stream value identifying the data stream may be stored in a register indexed by a tag associated with a command received from the host device. The command may be passed to a storage media device, wherein the passing is controlled by a processor of the serial device. The tag may be extracted from an address value received from the storage media device in response to execution of the command by the storage media device. The data stream value may be retrieved from the register using the extracted tag as an index without requiring an interrupt to the processor to determine the data stream value.
Abstract:
The present disclosure discloses a power transistor array designed to have a very low resistance. The power transistor array includes a bottom metal layer and a top metal layer. The bottom metal layer includes a plurality of strips, each corresponding to either drain or source strips, the drain and source strips being placed in parallel and alternating with each other. Further, the top metal layer, above the bottom metal layer, includes a plurality of strips. Each strip corresponds to either drain or source strips, the drain and the source strips being placed and alternating with each other. The strips of the top metal layer are oriented at angle with respect to the strips of the bottom metal layer. Moreover, the power transistor includes a plurality of bond pads on the top metal layer, and bond wires with one end attached to the corresponding bond pad.
Abstract:
A wireless audio device may realize power savings when processing multi-channel data, e.g. 2-channel stereo audio data, by splitting the multi-channel block data into separate data blocks for each channel, e.g. Left-channel data block and Right-channel data block, and processing each separate data block independently in the source device to generate respective data packets targeting corresponding sink devices, e.g. a Left earphone and a Right earphone. The source device may then transmit each data packet to a different corresponding sink device, e.g. a Left-channel packet to a Left earphone and a Right-channel packet to a Right earphone. The data packets may also include header information indicative of whether a next packet is intended for a given sink device, enabling sink devices to enter sleep mode when the header information indicates that a next packet is not intended for the given sink device, to save power.