Abstract:
A silicon based microphone sensing element and a method for making the same are disclosed. The microphone sensing element has a diaphragm with adjoining perforated plates on the front side of a conductive substrate. The diaphragm is aligned above a back hole in the substrate wherein the front opening of the back hole is smaller than the diaphragm. The diaphragm is supported by mechanical springs each having one end attached to the diaphragm and another end connected to a rigid pad anchored on a dielectric spacer. The diaphragm, perforated plates, and mechanical springs are preferably made of the same film and are suspended above an air gap that overlies the substrate. A first electrode is formed on one or more rigid pads and a second electrode is formed at one or more locations on the substrate to establish a variable capacitor circuit. Different embodiments are shown that reduce parasitic capacitance.
Abstract:
A MEMS microphone with a stacked PCB package is described. The MEMS package has at least one MEMS acoustic sensor device located on a PCB stack. A metal cap structure surrounds the at least one MEMS acoustic sensor device wherein an edge surface of the metal cap structure is attached and electrically connected to the PCB stack. In a first embodiment, a back chamber is formed underlying the at least one MEMS acoustic sensor device and within the PCB stack wherein an opening underlying the at least one MEMS acoustic sensor device accesses the back chamber. An opening in the metal cap structure not aligned with the at least one MEMS acoustic sensor device allows external fluid, acoustic energy or pressure to enter the at least one MEMS acoustic sensor device. In a second embodiment, a back chamber is formed in the space under the metal cap and over the first PCB. A hollow chamber is formed between the first PCB and the second PCB wherein an opening under the at least one MEMS acoustic sensor device accesses the hollow chamber. An opening in a bottom surface of the PCB stack not aligned with the at least one MEMS acoustic sensor device also accesses the hollow chamber and allows external fluid, acoustic energy or pressure to enter the at least one MEMS acoustic sensor device.
Abstract:
A MEMS package and a method for its forming are described. The MEMS package has at least one MEMS device located on a flexible substrate. A metal structure surrounds the at least one MEMS device wherein a bottom surface of the metal structure is attached to the flexible substrate and wherein a portion of the flexible substrate is folded over a top surface of the metal structure and attached to the top surface of the metal structure thereby forming the MEMS package.
Abstract:
A MEMS package and methods for its embodiment are described. The MEMS package has at least one MEMS device mounted on a flexible and foldable substrate. A metal cap structure surrounds the at least one MEMS device wherein an edge surface of the metal cap structure is attached to the flexible substrate and wherein a portion of the flexible substrate is folded under itself thereby forming the MEMS package. A meshed metal environmental hole underlying the at least one MEMS device provides enhanced EMI immunity.
Abstract:
A MEMS package and a method for its forming are described. The MEMS package has at least one MEMS device located on a flexible substrate. A metal structure surrounds the at least one MEMS device wherein a bottom surface of the metal structure is attached to the flexible substrate and wherein a portion of the flexible substrate is folded over a top surface of the metal structure and attached to the top surface of the metal structure thereby forming the MEMS package.