Abstract:
A method for determining a spray position for a spray tool includes accessing an image signal generated by a camera, the image signal corresponding to at least an udder of a dairy livestock. The method further includes processing the accessed image signal to determine a tangent to the rear and a tangent to the bottom of the udder of the dairy livestock. The method concludes by determining a spray position from which a spray tool may apply disinfectant to the teats of the dairy livestock, wherein the spray position is a position relative to the intersection of the two tangents.
Abstract:
A system for cleaning a dairy animal milker unit and applying dip to a dairy animal, the system includes a main control, an air supply, a water supply, a backflush fluid supply, a dip supply, a stall control for receiving the air, water, backflush fluid and dip supplies, and a safety valve that is adjacent to a downstream portion of the milker unit to control backflush and dip fluids being fed to the milker unit.
Abstract:
A teatcup liner comprises an upper mouthpiece, an intermediate barrel and a lower connecting tube. The upper mouthpiece further comprises a mouthpiece transition, a mouthpiece lip, and a groove formed in an outer surface of the upper mouthpiece. The intermediate barrel extends along an axial direction for receiving a teat inserted axially thereinto through said mouthpiece. An inner dimension of the upper mouthpiece defines a cavity bore and the groove is located substantially in line with the largest diameter of the cavity bore.
Abstract:
A method comprises determining a tangent to the rear of an udder of a dairy livestock, and determining a tangent to the bottom of the udder of the dairy livestock. The method continues by determining a position relative to the intersection of the two tangents, and extending a robot arm to the determined position.
Abstract:
A system for applying disinfectant to the teats of a dairy livestock includes a carriage mounted on a track, the carriage operable to translate laterally along the track. The system further includes a robotic arm including a first member pivotally attached to the carriage, a second member pivotally attached to the first member and a spray tool member pivotally attached to the second member. The robotic arm further includes a spray tool attached to the spray tool member. The system further includes a controller operable to cause at least a portion of the robotic arm to extend between the hind legs of a dairy livestock such that the spray tool may discharge a disinfectant to the teats of the dairy livestock.
Abstract:
A method for operating a robotic arm comprises determining a speed of rotation of a rotary milking platform, the rotary milking platform having a stall for a dairy livestock. The method further includes moving a carriage along a track positioned adjacent to the rotary milking platform at a rate that is based at least in part upon the determined speed of rotation of the rotary milking platform. The method further includes extending a robotic arm that is coupled to the carriage between the legs of the dairy livestock.
Abstract:
A system for operating a robotic arm, comprises a controller and a robotic arm. The controller receives an indication that a stall of a rotary milking platform in which a dairy livestock is located has moved into an area adjacent a robotic arm that is detached from the rotary milking platform. The controller also determines whether a milking cluster is attached to the dairy livestock. The robotic arm is communicatively coupled to the controller and extends between the legs of the dairy livestock if the controller determines that the milking cluster is not attached to the dairy livestock. The robotic arm does not extend between the legs of the dairy livestock if the controller determines that the milking cluster is attached to the dairy livestock.
Abstract:
A method for applying disinfectant to the teats of a dairy livestock, comprises receiving a trigger signal indicating that a stall of a rotary milking platform housing a dairy livestock is located adjacent to a track, the track having a carriage carrying a robotic arm mounted thereto. The method continues by communicating a first signal to a first actuator coupled to the track and the carriage, the first signal causing operation of the first actuator such that the carriage moves along the track in relation to the rotary milking platform. The method concludes by communicating one or more additional signals to one or more actuators of the robotic arm, the one or more additional signals causing operation of the one or more actuators of the robotic arm such that at least a portion of the robotic arm extends between the hind legs of a dairy livestock.
Abstract:
A system includes a milking stall to accommodate a dairy livestock and a robotic attacher. The robotic attacher extends under the dairy livestock and comprises a nozzle. The robotic attacher is operable to rotate such that, during a first operation, the nozzle is positioned generally on the bottom of the robotic attacher, and during a second operation, the nozzle is positioned generally on the top of the robotic attacher.
Abstract:
A method comprises extending a robotic attacher under a dairy livestock positioned in a milking stall, wherein the robotic attacher comprises a nozzle that is positioned generally on the bottom of the robotic attacher during a first operation. The method further comprises rotating the robotic attacher during a second operation such that the nozzle is positioned generally on the top of the robotic attacher.