Abstract:
Apparatus in fluid communication with a water leg portion of a hydrocarbon-contaminated water, e.g., a water leg portion of an offshore drilling or production platform sump tank for conveying water, separated from oil, into contact with organophilic media canisters such that the hydrocarbons and other organic materials commingled with the sump tank water will be adsorbed onto the organophilic media and detected by the embedded probe in selected canisters. The canisters are provided in a plurality of stacks and are in fluid communication with a header disposed at the bottom of the vessel housing the various stacks of canisters. Solids that do not pass through the canisters are accumulated at the bottom of the vessel and easily drained through a drain port. The water will pass through the media and will be conveyed back to the ocean water without contamination. At some point in time, the organophilic media will become “spent” and at a certain “spent level”, the saturated condition of the organomedia will be electronically detected by the embedded probe and alarm/control panel. The alarm indicates that the “spent” organophilic media should be replaced with fresh media or the spent media regenerated.
Abstract:
Apparatus and for the treatment of storm water runoff to remove contaminants that accumulate in the storm water when it flows over paved surfaces in urban areas. The apparatus includes a basket that has an outer surrounding water-permeable wall, and an inner water-permeable wall, spaced from and surrounded by the outer wall. A bed of an absorbent, able to absorb contaminants in the storm water, is disposed in the space between the outer and inner walls, while allowing fluid communication between the walls. An inner drainage space is defined by the inner wall and is in fluid communication with the absorbent. During operation, storm water flows through the outer permeable wall, into the bed where it is treated; and treated water flows from the bed through the inner wall into the inner drainage space. Treated water then flows from the drainage space, in some embodiments under a siphon-effect, into a treated water drainage conduit for disposal. The absorbent may be selected from compost, vermiculite, activated carbon, peat, ion exchangers, clays, and the like, and may be in the form of pellets or particulates. The baskets are of modular construction so that the beds are in containers that may be removed and replaced, with minimal labor. Moreover, the baskets may be backflushed to remove particulates and debris that clog the beds and retard the treatment rate.
Abstract:
A backflushable filter including a housing having an inlet coupled to an upstream fluid inlet and an outlet coupled to a downstream fluid outlet, a filter assembly including a plurality of cylindrical filters, defining an upstream surface communicating with the inlet and a downstream surface communicating with an axial hollow volume therein, the axial hollow volume communicating with the outlet, a backflushing assembly comprising a backflushing nozzle disposed in each axial hollow volume for backflushing engagement with each of the cylindrical filters at its downstream surface, and a backflush drain communicating with the upstream surface.
Abstract:
A filter element having an end cap is provided with a seal that can better accommodate non-round holes. The seal may be a chevron type seal and/or other similar seal having a sealing flange for forming a radial seal. Methods of replacing a filter having an O-ring gasket to improve upon sealing are provided as well as filtration systems employing the filter element.
Abstract:
A system for removing material from a flowing liquid, where the system includes one or more cartridges, where each cartridge has an outer permeable wall and an inner permeable wall that form a media region between the walls, where a media is disposed within at least part of the media region to remove at least a portion of the material from the flowing liquid, the cartridge also having an inner cartridge lumen in communication with the inner permeable wall, and a cartridge outlet in communication with the inner cartridge lumen; a cartridge chamber having a treatment region that houses the one or more cartridges, where the cartridge chamber also includes a chamber inlet to accept the flowing liquid, and a chamber outlet to discharge treated liquid; and an actuatable valve positioned outside the one or more cartridges, where the valve controls a flow rate of the flowing liquid within the treatment region by actuating in response to a change in a level of the liquid in the treatment region.
Abstract:
Apparatus in fluid communication with a water leg portion of a hydrocarbon-contaminated water, e.g., a water leg portion of an offshore drilling or production platform sump tank for conveying water, separated from oil, into contact with organophilic media canisters such that the hydrocarbons and other organic materials commingled with the sump tank water will be adsorbed onto the organophilic media and detected by the embedded probe in selected canisters. The canisters are provided in a plurality of stacks and are in fluid communication with a header disposed at the bottom of the vessel housing the various stacks of canisters. Solids that do not pass through the canisters are accumulated at the bottom of the vessel and easily drained through a drain port. The water will pass through the media and will be conveyed back to the ocean water without contamination. At some point in time, the organophilic media will become “spent” and at a certain “spent level”, the saturated condition of the organomedia will be electronically detected by the embedded probe and alarm/control panel. The alarm indicates that the “spent” organophilic media should be replaced with fresh media or the spent media regenerated.
Abstract:
Apparatus in fluid communication with a water leg portion of a hydrocarbon-contaminated water, e.g., a water leg portion of an offshore drilling or production platform sump tank for conveying water, separated from oil, into contact with organophilic media canisters such that the hydrocarbons and other organic materials commingled with the sump tank water will be adsorbed onto the organophilic media and detected by the embedded probe in selected canisters. The canisters are provided in a plurality of stacks and are in fluid communication with a header disposed at the bottom of the vessel housing the various stacks of canisters. Solids that do not pass through the canisters are accumulated at the bottom of the vessel and easily drained through a drain port. The water will pass through the media and will be conveyed back to the ocean water without contamination. At some point in time, the organophilic media will become nullspentnull and at a certain nullspent levelnull, the saturated condition of the organomedia will be electronically detected by the embedded probe and alarm/control panel. The alarm indicates that the nullspentnull organophilic media should be replaced with fresh media or the spent media regenerated.