摘要:
A method for recovering methane gas from a landfill involves the use of a main absorber, a flash system, an optional ancillary absorber and an optional polishing absorber. The recovered gas is maintained at a temperature that enhances a solvent's ability to absorb carbon dioxide from the recovered gas. While the main absorber uses the solvent for absorbing most of the carbon dioxide from the recovered gas, the flash system removes much of the carbon dioxide from the solvent exiting the main absorber. In some examples, at least portion of the flash system operates at subatmospheric pressure to create a vacuum that draws in a generally inert stripper gas (e.g., air, nitrogen, etc.) at atmospheric pressure. The stripper gas helps remove carbon dioxide from the solvent in the flash system.
摘要:
A system for carbon dioxide capture from a gas mixture comprises an absorber that receives a lean solvent system stream (containing a chemical solvent, physical-solvent additive, and water) from the stripper, a stripper that receives the rich solvent stream from the absorber and produces the product carbon dioxide and the lean solvent through the use of a reboiler in fluid communication with a lower portion of the stripper, a condenser in fluid communication with a vapor outlet of the stripper, a cross-exchanger in fluid communication with a rich solvent system outlet from the absorber and a rich solvent system inlet on the stripper, and a splitter. The splitter is configured to separate the rich solvent system stream into a first portion and a second portion, where the first portion directly passes to the stripper and the second portion passes through the cross-exchanger prior to passing to the stripper.
摘要:
A solvent for absorbing H2S and CO2 is regenerated using two regenerators. Rich solvent is fed to a first regenerator producing a first acid gas stream from the top, and a partially regenerated solvent from the bottom. The partially regenerated solvent is fed to a second regenerator producing an overhead vapor stream from the top and a lean solvent stream from the bottom. A portion of the second regenerator overhead vapor stream may be cascaded to the first regenerator to contact rich solvent. The first acid gas stream and the remaining second regenerator overhead vapor stream are respectively fed to the first and second reaction zones of a two-stage Claus reaction furnace. Substantially all volatile organic contaminants are stripped in the first regenerator, and thus favorably destroyed in the first reaction furnace zone by virtue of higher local combustion temperatures and closer approach to oxidizing conditions.
摘要:
The system is provided with: a first heat exchanger which is interposed at an intersection between a rich solution supply line and a lean solution supply line, which has absorbed CO2 and H2S extracted from a bottom portion of an absorber, and a regenerated absorbent; a second heat exchanger which is interposed at an intersection between a semi-rich solution supply line and a branch line branched at the branch portion C from the lean solution supply line, and the lean solution; a merging portion which merges a branch line configured to supply the lean solution after heat exchange with the lean solution supply line; and a flow rate adjusting valve which is interposed in the lean solution supply line to adjust the distribution amount of the lean solution.
摘要:
The invention relates to a method of selectively removing hydrogen sulfide H2S from a gaseous effluent comprising at least H2S and CO2, wherein a stage of selective absorption of hydrogen sulfide over CO2 is carried out by contacting said effluent with a solution comprising (a) water and (b) at least the following diamine: 1,2-bis(2-dimethylaminoethoxy)ethane and wherein the absorption selectivity is controlled by adding (c) a viscosifying compound to the absorbent solution.
摘要:
Embodiments described herein provide methods and systems for generating a CO2 product stream. A method described includes generating a liquid acid gas stream including H2S and CO2. The liquid acid gas stream is flashed to form a first vapor stream and a bottom stream. The bottom stream is fractionated to form a second vapor stream and a liquid acid waste stream. The first vapor stream and the second vapor stream are combined to form a combined vapor stream. The combined vapor stream is treated in an absorption column to remove excess H2S, forming the CO2 product stream.
摘要:
A natural gas dehydration system and method includes a contactor, a flash tank, and a still interconnected by a desiccant circulation system. A continuously fired reboiler is coupled to the still and the flash tank to burn the flash gas from the flash tank and heat the desiccant.
摘要:
Acid gas is removed from a feed gas in an absorber that produces a treated feed gas and a rich solvent. The treated feed gas is passed through an H2S scavenger bed, and the H2S scavenger bed is regenerated using H2S depleted acid gas flashed from the rich solvent. Most preferably, the off gas from the regenerating bed is injected into a formation.
摘要:
A method is provided of regenerating solvents used to remove gaseous contaminants from gaseous mixtures of various compositions with significantly reduced energy required, where one exemplary method includes directing a solution with the solvents and the preferentially absorbed and/or dissolved gaseous contaminants through a filter comprising a membrane having pre-determined diffusion rates so that a substantial portion of the gaseous contaminants pass through the filter, permitting the passage of the gaseous contaminants through the membrane for further processing, and recirculating the separated solvent so that it may be used again to remove new gaseous contaminants. In some cases, it may be desired to permit some of the solvent to pass through the membrane along with the gaseous contaminant.
摘要:
Disclosed herein is a system comprising an absorber; the absorber permitting contact between a flue gas stream that comprises carbon dioxide and a solvent to produce a carbon dioxide rich solvent; a regenerator disposed downstream of the absorber; the regenerator being operative to dissociate the carbon dioxide from the solvent; and a compression system disposed downstream of the regenerator comprising a plurality of compression stages; where each compression stage comprises a compressor that is operative to pressurize the carbon dioxide that is dissociated from the solvent; and where at least some of the compression stages comprise a knockout tank disposed upstream of the compressor and an intercooling heat exchanger disposed downstream of the compressor; where the knockout tank is operative to remove liquid present in the carbon dioxide and where the intercooling heat exchanger is operative to remove heat generated during the pressurizing of the carbon.