Abstract:
A continuously flowing fluid is processed by being fed to the top of a hydraulic downdraft column (17) which is of a height such that the pressure at the bottom thereof will approximately be at the pressure necessary to create supercritical water conditions. The fluid is conducted to the bottom of the column (17) and received in a reaction chamber (21) in which the majority of the fluid is recirculated around an annular baffle plate (24). The material in the reaction chamber (21) is heated to a temperature above that necessary to create supercritical water conditions by an independent reaction taking place in a heating chamber (32). The result is that the fluid will undergo chemical reactions at the supercritical temperature and pressure range and will be of a lower specific gravity than the unprocessed fluid. The material not being recirculated in the chamber (21) is fed to one of two updraft columns (30, 31), a start-up column (30) used to preheat the material in the downdraft column (17) during initiation of the process, and a second column ( 31) isolated from the downdraft column (17) so as not to transmit any heat thereto during normal operation of the process. The temperature of the fluid in the downdraft column (17) is thereby controlled to prevent decomposition of the material until the fluid enters the reaction chamber (21) at which time it is abruptly brought up to the supercritical water temperature.
Abstract:
Particulate olefin polymers are prepared by catalytic polymerization of monoolefins in an auxiliary liquid containing the monomers to be polymerized in dissolved form and the particulate polymer product in suspended form. The reaction mixture is recycled in a loop to which the starting materials are fed and from which the particulate polymer formed is removed. The essential features are (a) that a side stream is branched off from the loop, (b) that the side stream is caused to pass through a separating zone in which particulate olefin polymer is separated by centrifugal acceleration at temperatures and pressures in the same range as present in the loop and (c) that the separated particulate olefin polymer is discharged through flashing means.
Abstract:
An autoclave apparatus comprising an autoclave forming a product-receiving chamber having an inlet port in one end and an outlet port in the opposite end and being, further, formed with an access opening. An electrically heated heat exchanger is formed with a chamber which contains heat storage means and such chamber has an inlet in one end and an outlet in the opposite end. Conduits connect the inlet to the autoclave with the outlet from the heat exchanger and the outlet of the autoclave with the inlet to the heat exchanger. Means is provided for supplying gas to the system whereby such system may be pressurized with the gas and such gas circulated through the autoclave and in heatexchange relationship with the heat storage means to heat such gas to an elevated temperature thereby providing an atmosphere in the product-receiving chamber of the desired temperature and pressure.
Abstract:
Methods and apparatus to produce alkynes are described. The method includes combusting fuel and an oxidizer in a combustion zone to create a carrier gas stream, which is accelerated to supersonic speed in an expansion zone. A feedstock material is injected into a feedstock injection zone using two or more pluralities of injection nozzles. The injection nozzles are arranged annularly. The carrier gas stream is transitioned from supersonic speed to subsonic speed to create a shockwave in a reaction zone. The reaction zone is directly connected to the feedstock injection zone, and the shockwave is created adjacent to the feedstock injection zone. The carrier gas stream and the feedstock material are simultaneously mixed and reacted.
Abstract:
A tubular reactor for use in polymerisation reactions is described, having a design pressure PR of 40-65 barg, at least a portion of which is oriented vertically and at least part of which vertical portion is surrounded by a concentric jacket for the passage of cooling fluid, wherein the design pressure in barg of the jacket PJ is less than 0.0018.PR2.25. Another aspect of the invention concerns a tubular reactor for use in polymerisation reactions having a design pressure PR of 40-65 barg, at least a portion of which is oriented vertically and at least part of which vertical portion is surrounded by a concentric jacket for the passage of cooling fluid, wherein the actual thickness of the reactor wall is either no more than 2 mm greater and/or no more than 10% greater than the minimum wall thickness required to withstand the design pressure PR as calculated according to the ASME Boiler and Pressure Vessel code.
Abstract:
The invention relates to a method and apparatus for safely producing hydrogen peroxide by injecting dispersed minute bubbles of hydrogen and oxygen into a rapidly flowing liquid medium. The minute bubbles are surrounded by the liquid medium of sufficient volume for preventing an explosive reaction between the hydrogen and oxygen. The liquid medium is formed of an acidic aqueous solution and a Group VIII metal catalyst. Hydrogen is sparged into the flowing medium for dissolution of the hydrogen in the medium. Oxygen bubbles are reacted with the dissolved hydrogen for producing hydrogen peroxide. Preferably, the liquid medium has a velocity of at least 10 feet per second for providing a bubbly flow regime in the reactor. The invention allows the direct combination of oxygen and hydrogen while preventing propagation of an explosive condition within the reactor. The method and apparatus provide for the safe production of hydrogen peroxide with low manufacturing costs.
Abstract:
An olefin is polymerized in a hydrocarbon diluent in a turbulent reaction zone to produce particles of polymer which are substantially insoluble in the diluent. Fouling of the reactor by adherence of polymer particles to the walls of the reactor is reduced by adding to the reaction medium a composition which comprises a porphyrin compound, alone or together with a metal alkyl sulfosuccinate. This composition is also useful as an antistatic agent for liquid hydrocarbons and halohydrocarbons.
Abstract:
A mixing and metering device for mixing and metering liquid chemicals comprises a circulation pump having a suction port and a pressure port, a pipe coil, the contents volume of which is dimensioned such that the chemicals metered into the device have a residence time sufficient for the chemical reaction, a choke tube which guides the circulation stream exiting from the pipe coil, with formation of a choke point, from the outlet of the pipe coil to a metering conduit which is arranged between the choke tube and the suction port of the circulation pump and at least two metering valves, and also a falling tube which is connected to the choke tube and has a vacuum flange of the mixing and metering device to a vacuum device.