Abstract:
Apparatus and methods are provided for converting methane in a feed stream to acetylene. A hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process.
Abstract:
A method of making light olefins is described. The method involves producing an alkyne in a pyrolysis process. The alkyne is catalytically hydrogenated in a hydrogenation zone to produce a product stream containing a light olefin. A byproduct stream from the pyrolysis process comprises carbon oxide and hydrogen. The byproduct stream is treated to convert the carbon oxide and the hydrogen to an oxygenated product in a carbon oxide conversion zone, which can then be converted to an olefin in an oxygenate to olefin process.
Abstract:
Apparatus and methods are provided for converting methane in a feed stream to acetylene. A hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process.
Abstract:
A quench system and process for cooling high temperature gases is presented. The quench system includes a frustum, or conic, shaped section having an inlet at the smaller end of the quench section and the outlet at the larger end of the quench section. The system includes spray nozzles having openings flush with the wall of the quench section. The process includes spraying a large volume of liquid in small droplets for rapid heat transfer and vaporization of the quench liquid.
Abstract:
A process for a liquid phase selective hydrogenation of acetylene to ethylene in a reaction zone. In order to decrease the selectivity to C4+ hydrocarbons, the concentration of acetylene in solvent is lowered by recycling solvent, using a split feed injection, or both. The streams can be split in to equal or unequal portions. A hot separator may be used to separate solvent from the reactor effluent, and the solvent may be recovered and used to decrease the concentration of acetylene in the solvent.
Abstract:
A process is presented for quenching a process stream in a paraffin dehydrogenation process. The process comprises cooling a propane dehydrogenation stream during the hot residence time after the process stream leaves the catalytic bed reactor section. The process includes cooling and compressing the product stream, taking a portion of the product stream and passing the portion of the product stream to the mix with the process stream as it leaves the catalytic bed reactor section.
Abstract:
A quench system and process for cooling high temperature gases is presented. The quench system includes a frustum, or conic, shaped section having an inlet at the smaller end of the quench section and the outlet at the larger end of the quench section. The system includes spray nozzles having openings flush with the wall of the quench section. The process includes spraying a large volume of liquid in small droplets for rapid heat transfer and vaporization of the quench liquid.
Abstract:
Methods and systems are provided for converting methane in a feed stream to acetylene. The method includes removing at least a portion of organic oxygenates from a hydrocarbon stream. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process. The method according to certain aspects includes controlling the level of organic oxygenates in the hydrocarbon stream.
Abstract:
Apparatus and methods are provided for converting methane in a feed stream to acetylene. A hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process.
Abstract:
Methods and apparatus to produce alkynes are described. The method includes combusting fuel and an oxidizer in a combustion zone to create a carrier gas stream, which is accelerated to supersonic speed in an expansion zone. A feedstock material is injected into a feedstock injection zone using two or more pluralities of injection nozzles. The injection nozzles are arranged annularly. The carrier gas stream is transitioned from supersonic speed to subsonic speed to create a shockwave in a reaction zone. The reaction zone is directly connected to the feedstock injection zone, and the shockwave is created adjacent to the feedstock injection zone. The carrier gas stream and the feedstock material are simultaneously mixed and reacted.