Abstract:
A method and apparatus for automatically welding and handling mash welded tailored blank composites. The method comprises the steps of transferring first and second sheet component parts from respective input stacks to an assembly table of a mash welding machine. The sheet components are disposed in an overlapping lap joint configuration and the lap joint is welded along a linear weld seam thus defining a welded blank. The welded blank is conveyed in a timed step manner from the welding machine to an output stacking machine via a magnetic stepping conveyor and the blank is transferred from the conveyor to an output stack of completed blanks with a stacking machine. An apparatus is provided to carry out the method.
Abstract:
In laser butt welding of metal sheets, in particular sheets of unequal thicknesses, the temperature is measured at two points behind the liquid-solid interface. From combination of the two readings obtained a series of process data can be derived whereby the welding process can be monitored.
Abstract:
An apparatus for working material employs a tilting mechanism which tilts a head about a theoretical point disposed upon the sheet material. The welding or cutting head is defined as a laser head and the pivot point corresponds with the laser beam focal point. The laser head projects a laser beam directly upon the sheet material without the use of redirecting steerable mirrors. At least a pair of tilting mechanisms are employed to tilt the welding or cutting head along differing rotational planes. Various axial slides are employed in combination with a gantry. A laser vision system tracks a welding seam and a pre-weld gap. The tilting mechanism creates a tailored blank butt weld between dissimilar materials. A method of operating the present invention is also provided.
Abstract:
A system for gauging the relative positions of two opposing joint edges on sheet metal components prior to welding. The system comprises a gauging assembly including two pairs of gauging pins which are movable between a retracted position and a gauging position. Each pair of pins defines a separate edge contact line. When each joint edge has contacted both pins in a respective pair, electrical circuitry indicates as much and the components are clamped in this relationship.
Abstract:
In general, the present invention pertains to an apparatus and control system for working sheet material employs a tilting mechanism which automatically tilts a head about a theoretical point disposed upon the sheet material. In another aspect of the present invention, the head is defined as a laser head and the pivot point corresponds with the laser beam focal point. A further aspect of the present invention provides a seam tracking device and control system which automatically adjust a welding head height relative to the sheet material as a datum rather than relative to a gantry or other structure supporting the welding head. In yet another aspect of the present invention, an optical seam tracking device is employed to automatically tilt the welding head along differing rotational planes. In still another aspect of the present invention, various axial slides are employed in combination with a gantry. A further aspect of the present invention uses a seam tracking device and microprocessor to track a welding seam and move a welding head predetermined amounts due to sensed pre-weld gap widths. Another aspect of the present invention uses an automated tilting mechanism for creating a tailored blank butt weld between dissimilar materials. A method of operating the present invention is also provided.
Abstract:
The present invention relates to a system for welding a joint edge of a first sheet metal component to a joint edge of a second sheet metal component to form a weld joint. The system includes a gauging sub-system which positions each joint edge at a desired distance from a weld line. A sub-system then clamps the sheet metal components in this relationship. A joint edge butting sub-system then moves the clamped components toward each other until the edges are in butting relationship. A laser welding sub-system then moves a welding head along the butted edges to form the weld joint. The laser beam, which forms the weld joint, passes through an air shield in the welding mechanism so that weld splatter from the welding zone is carried off by an air stream and does not reach the welding head optics. The invention also relates to a method of laser welding.
Abstract:
A method and apparatus for automatically welding and handling welded tailored blank composites. The method comprises the steps of transferring first and second sheet component parts from respective input stacks to an assembly table of a welding machine. The sheet components are disposed in a butt joint or an overlapping lap joint configuration and the blanks are welded together along a weld seam thus defining a welded blank. The welded blank is conveyed in a timed step manner from the welding machine to an output stacking machine via a magnetic stepping conveyor and the blank is transferred from the conveyor to an output stack of completed blanks with a stacking machine. An apparatus is provided to carry out the method.
Abstract:
The invention relates to a process of butt-welding together sheet metal plates, in particular those having different sheet metal thicknesses, by means of an edge preparation to the extent that the edges of the sheet metal plates are milled in a sheet metal stack (5). For this purpose, the appropriate apparatus has a supporting and clamping means (1, 2, 3, 9, 10).
Abstract:
A system for bringing the joint edges of first and second sheet metal components into butting relationship. The components are clamped in opposing clamping assemblies with one of the assemblies being movable toward and away from the other. A fluid motor is mounted on one clamping assembly and a piston extending therefrom is connected to the other clamping assembly through a pair of expandable bladders. By sequentially introducing high and low pressure air to first one bladder and then the other, the movable clamping assembly is caused to move one component toward the other while accommodating any initial misalignment between the edges.
Abstract:
A joint is formed between adjacent edges of a pair of weldable components by forming an undercut on one of the edges. The other edge abuts the undercut so that a portion of the one edge overlaps the other. The edges are laser welded by impinging a beam on the portion to melt the overlap.