Abstract:
Systems and methods are disclosed for aircraft wheels and brakes systems for use in, for example, an aircraft. In this regard, a damper for an axle may comprise a cylindrical canister defining a cavity configured to be inserted into a bore of the axle, the cavity at least partially filled with a damping material. The damper may act as a particle damper or a tuned mass damper to mitigate harmonic vibration of the axle and therefore the wheel and brake system.
Abstract:
Wheel drive system, particularly for the ground circulation of an aircraft comprising a motor unit (22) borne by an unsuspended part (14b) of a landing gear strut (14) of the aircraft and comprising an electric motor (26) and reduction means, and a clutch device (24) connecting the output shaft (26a) of the electric motor (26) to the wheel (12) via the reduction means.The clutch device (24) comprises a dog-clutch mechanism (32, 34) comprising a drive part (32) secured to the motor unit (22) and a receiving part (34) secured to the tire (12a) of the wheel (12), and a system for the translational movement, along the axis of the axle crossbeam (20) of the landing gear strut (14), of the drive part (32) into an engaged position in which the drive part (32) collaborates with the receiving part (34) and a disengaged position in which the drive part (32) is separated from the receiving part (34).
Abstract:
An unmanned air module includes one or more rotors, engines, a transmission and avionics. Any of several different ground modules may be attached to the air module. The air module may fly with and without the ground module attached. The ground module may be manned. The air module may have two rotors, which may be ducted fans. The air module may include a parachute, an airbag and landing gear.
Abstract:
An aircraft landing gear assembly includes a bi-stable, split line tube biased to assume a tubular condition to serve in place of a lock link or side stay and an actuator configured to radially enlarge the tube at a region for folding.
Abstract:
An unmanned air module includes one or more rotors, engines, a transmission and avionics. Any of several different ground modules may be attached to the air module. The air module may fly with and without the ground module attached. The ground module may be a vehicle ground module and may be manned. The vehicle ground module may transport the attached air module across the ground. The air module may have two rotors, which may be ducted fans.
Abstract:
A method and apparatus for positioning a tail skid assembly for a maximum rotation angle for an aircraft may be provided. A determination may be made as to whether the tail skid assembly is to be deployed for takeoff or landing. A set of parameters may be identified based on a determination of whether the tail skid assembly is to be deployed for takeoff or landing. A desired maximum rotation angle for the aircraft may be identified using the set of parameters. The tail skid assembly may be deployed to allow the desired maximum rotation angle for the aircraft.
Abstract:
An active landing gear damping system and method for decelerating a vehicle during a terrain impact event, such as an aircraft landing or crash. The system monitors aircraft state data and terrain information to predict an impact of the vehicle with the terrain. The system can then determine a target damper force for each landing gear of the vehicle and a predicted damper velocity at the time of impact. Each landing gear can include an adjustable damper valve, wherein adjustment of the damper valves varies the damping coefficient of the respective dampers. The system can adjust valves of the respective dampers to provide the target force based on the predicted damper velocity. After an impact begins, the system can continuously monitor and adjust the valve to maintain the target force.
Abstract:
A device for coupling an actuator for operating an aircraft undercarriage to an aircraft structure. The device comprises a lever having a first end for hinging to the structure of the aircraft, and a second end to which the actuator is hinged, a pre-loading structure acting on the lever to urge it towards a stable rest position that is occupied by the lever in the absence of any force transiting through the actuator; and an abutment structure defining at least one working position for the lever when the actuator is activated.
Abstract:
An aircraft landing gear comprising: a shock-absorbing main leg having a sprung part for attachment to an aircraft and an un-sprung part including a slider and an axle carrying at least one wheel, the wheel having a toothed ring gear; a drive transmission mounted externally on the sprung part, or on the un-sprung part, of the main leg, the drive transmission having at least one motor and a drive pinion for meshing with the toothed ring of the wheel; and an actuator for lifting the drive transmission into and out of driving engagement with the toothed ring and for maintaining the driving engagement as the landing gear deflects during a ground taxiing operation. Also, a method of operating the aircraft landing gear.
Abstract:
An auxiliary mechanism includes a lever unit, a spring unit and a positioning unit. One of the units pivotally connects to the upper portion of a main shock absorber strut so as to pivot between a predetermined lower position for take-off and landing and an upper position. Another unit pivotally connects at an upper end to the upper portion of the main shock absorber strut and pivotally connects at a lower end to the first unit. A third unit pivotally connects at a lower end to the bogie beam at an auxiliary pivot and connects at an upper end to the lever. The positioning unit assumes either a contracted state or extended state for taxiing, take-off and landing, and assumes the other state for stowing the landing gear after take-off. The spring unit provides spring resistance to pivotal movements of the bogie beam about the main pivot during taxiing.