Abstract:
A flush system for a dispenser nozzle may include a flush diverter and a carrier. The flush diverter may include a dispense position and a flush position. The carrier maneuvers the flush diverter to either the dispense position or the flush position with respect to the beverage dispenser nozzle.
Abstract:
Disclosed is a fluid dispensing system for precisely controlling the mixing of a first fluid (i.e., a diluent such as water) with a second fluid (i.e., a concentrate) at a mixing point within the fluid dispensing system. A valve is positioned in the dispensing system along the line of supply of the second fluid upstream of the mixing point, such valve being simultaneously actuated through application of positive and/or negative pressure to allow the second fluid to flow through the valve. The application of positive and/or negative pressure is generated from the first fluid to be dispensed by the system and mixed with the second, such that the termination of flow of the first fluid immediately terminates flow of the second fluid to ensure proper mixing of the two fluids in the final solution, thus preventing inadvertent leakage of the second fluid or collection of the second fluid within the flow system which may become subject to spoilage or contamination.
Abstract:
An intelligent fountain dispenser performs automated control and systems diagnostics in real time. The intelligent fountain dispenser includes a controller in electrical communication with a syrup valve, a water valve, a carbonator valve, a water level sensor, a flowmeter, and an input panel. The intelligent fountain dispenser also includes a dispenser housing and a carbonator tank. Water and carbon dioxide mix in the carbonator tank to produce carbonated water. The carbonator valve supplies water to the carbonator tank in accordance with instructions received from the controller. The controller also instructs the syrup valve and the water valve in the supply of syrup and carbonated water, respectively, to the dispenser housing. The controller provides the instructions to the valves based on information received from the water level sensor, flowmeter, and input panel. The controller performs systems diagnostics by monitoring the voltage drop across current-sensing resistors associated with each of the valves. The controller can also perform system diagnostics based on information supplied by a signature resistor associated with the input panel.
Abstract:
A post mix fruit juice dispenser having a refrigerated cabinet at the top which houses separate containers for different juice concentrates. The machine mixes potable water with the concentrate on demand. The potable water is cooled in an ice bath at the rear of the cabinet, and the same refrigeration system which cools the ice bath provides a source for cooling air circulated in the cabinet about the concentrate containers. The concentrate containers and their discharge assemblies may be removed from the machine for cleaning, but the containers may be replenished through filling assemblies at the top of the cabinet without removing them.
Abstract:
Among other things, beverages are dispensed from one or more beverage dispensers based on selections made by users. Information about the dispensing of the beverages is sent to a central server where it is used to manage a variety of functions including replacement of depleted supplies of components. Various features of the beverage dispensers enable the beverages that are dispensed to be uniform and appealing to users.
Abstract:
A beverage supplying device comprising: a touch panel for receiving an operation for selecting a main syrup constituting a main beverage, and a topping syrup added as flavoring to the main beverage; a second syrup solenoid valve for opening and closing a passage for supplying the topping syrup that is stored under pressure in a syrup tank; a second syrup pump for intermittently supplying the topping syrup while the second syrup solenoid valve is open, the second syrup pump being provided to the passage for supplying the topping syrup between the syrup tank and the second syrup solenoid valve; and a nozzle for producing the main beverage by mixing the main syrup with water or carbonated water at a prescribed ratio, and producing a beverage by mixing the topping syrup with the main beverage without diluting the topping syrup.
Abstract:
The invention concerns a system for preparing a beverage comprising: a drinking cup (1) carrying an identifier (11), said identifier encoding information related to the shape of the drinking cup, and a beverage dispenser configured for preparing a beverage by introducing a beverage concentrate ingredient (10) in the drinking cup (1) and introducing a diluent in the drinking cup for mixing the liquid and the beverage concentrate ingredient inside the drinking cup, said dispenser comprising: diluent supply means (8), support means (6) for supporting the drinking cup, at least one nozzle (32) for introducing the diluent in the drinking cup, means (322, 62) for adapting the relative distance (d2) between the support means of the drinking cup and the at least one nozzle, and a sensing device (2) adapted to obtain information about the shape of said drinking cup.
Abstract:
An additive system is used with a post mix dispensing machine having a liquid inlet, and a supply of an additive for mixing with the liquid from the liquid inlet. A pump, having an additive inlet and an additive outlet, is coupled to a source of power. An additive supply line is coupled to the additive inlet. The additive supply line is coupleable to a source of an additive. A liquid delivery line connects the liquid inlet to a mixture delivery outlet. An additive delivery line connects the additive outlet to a mixing point along the liquid delivery line. An additive flow adjuster is used to control the flow of additive from the pump. Additive flowing through the additive delivery line mixes with liquid flowing through the liquid delivery line for passage to the mixture delivery outlet.
Abstract:
An intelligent fountain dispenser performs automated control and systems diagnostics in real time. The intelligent fountain dispenser includes a controller in electrical communication with a syrup valve, a water valve, a carbonator valve, a water level sensor, a flowmeter, and an input panel. The intelligent fountain dispenser also includes a dispenser housing and a carbonator tank. Water and carbon dioxide mix in the carbonator tank to produce carbonated water. The carbonator valve supplies water to the carbonator tank in accordance with instructions received from the controller. The controller also instructs the syrup valve and the water valve in the supply of syrup and carbonated water, respectively, to the dispenser housing. The controller provides the instructions to the valves based on information received from the water level sensor, flowmeter, and input panel. The controller performs systems diagnostics by monitoring the voltage drop across current-sensing resistors associated with each of the valves. The controller can also perform system diagnostics based on information supplied by a signature resistor associated with the input panel.
Abstract:
An intelligent fountain dispenser performs automated control and systems diagnostics in real time. The intelligent fountain dispenser includes a controller in electrical communication with a syrup valve, a water valve, a carbonator valve, a water level sensor, a flowmeter, and an input panel. The intelligent fountain dispenser also includes a dispenser housing and a carbonator tank. Water and carbon dioxide mix in the carbonator tank to produce carbonated water. The carbonator valve supplies water to the carbonator tank in accordance with instructions received from the controller. The controller also instructs the syrup valve and the water valve in the supply of syrup and carbonated water, respectively, to the dispenser housing. The controller provides the instructions to the valves based on information received from the water level sensor, flowmeter, and input panel. The controller performs systems diagnostics by monitoring the voltage drop across current-sensing resistors associated with each of the valves. The controller can also perform system diagnostics based on information supplied by a signature resistor associated with the input panel.