摘要:
According to some embodiments a method of processing an optical fiber comprises the steps of: (i) drawing the fiber at a drawing rate of at least 30 m/sec; and (ii) cooling the drawn fiber in a gas at an average cooling rate less than 5000° C./s, such that said cooling reduces the temperature of the fiber from an entering temperature in the range between 1500° C. and 1700° C. to another temperature in the range between 1200° C. and 1400° C., the gas being at a temperature between 800° C. and 1500° C.; and the thermal conductivity κ of the gas being not greater than 1.5×10−4 cal/cm-s-K for at least one temperature within a range of 800° C. to 1500° C. at one atm (atmosphere) pressure absolute.
摘要:
The present disclosure provides optical fiber preforms formed from core canes having large core-clad ratio, intermediate core-cladding assemblies, and methods for making the preforms and core cladding assemblies. The preforms are made from core canes having a contoured end surface. The contoured end surface(s) include a depression that acts to reduce the stress that develops at the junction of the end surface of the core cane with a soot cladding monolith arising from differences in the coefficient of thermal expansions of the core can and soot cladding monolith. The contoured end surface(s) leads to preforms having low defect concentration and low probability of failure during fiber draw.
摘要:
The present disclosure provides optical fiber preforms formed from core canes having large core-clad ratio, intermediate core-cladding assemblies, and methods for making the preforms and core cladding assemblies. The preforms are made with capped core canes. The capping material has a coefficient of thermal expansion less than the coefficient of thermal expansion of the core cane and more closely matched to or lower than the coefficient of thermal expansion of the surrounding cladding monolith in a cane-in-soot process. Presence of the cap reduces stresses that arise from differential thermal expansion of the core cane and cladding materials and leads to preforms having low defect concentration and low probability of failure during subsequent thermal processing steps.
摘要:
An optical surgical fiber assembly for delivering laser radiation from a laser radiation source to a treatment site has a sealed off capillary enclosing a delivery end of the fiber. The capillary is formed from an outermost layer of fused silica and an adjacent layer of boron-doped fused silica having a higher CTE than that of the fused silica. The capillary is shrink-fitted onto the delivery end of the fiber. A compressive stress is imparted to the outermost layer of the capillary as a result of the shrink-fitting process and the CTE difference between the layers. This provides mechanical hardening of the surface of the outermost layer.
摘要:
Methods and apparatus provide for birefringent waveguides suitable for optical systems exhibiting polarization dependence such as interferometer sensors including Sagnac interferometric fiber optic gyroscopes (IFOG). The waveguides, for some embodiments, may offer single polarization performance over lengths of about a kilometer or more due to polarization dependent attenuation. According to some embodiments, the waveguides incorporate a pure silica core for resistance to radiation-induced attenuation (RIA).
摘要:
Methods and apparatus provide for birefringent waveguides suitable for optical systems exhibiting polarization dependence such as interferometer sensors including Sagnac interferometric fiber optic gyroscopes (IFOG). The waveguides, for some embodiments, may offer single polarization performance over lengths of about a kilometer or more due to polarization dependent attenuation. According to some embodiments, the waveguides incorporate a pure silica core for resistance to radiation-induced attenuation (RIA).