Abstract:
The invention relates to an optical fiber comprising a gain medium which is equipped with: a core (22) which is formed from a transparent material and nanoparticles (24) comprising a doping element and at least one element for enhancing the use of said doping element; and an outer cladding (26) which surrounds the core. The invention is characterized in that the doping element is erbium (Er) and in that the enhancing element is selected from among antimony (Sb), bismuth (Bi) and a combination of antimony (Sb) and bismuth (Bi).According to the invention, one such fiber is characterized in that the size of the nanoparticles is variable and is between 1 and 500 nanometers inclusive, and preferably greater than 20 nm.
Abstract:
Process for preparing a silicon dioxide granule having a specific surface area of less than 1 m2/g and a proportion of impurities of less than 50 ppm, in which a) a silicon dioxide powder with a tamped density of 15 to 190 g/l, b) is compacted to slugs which are subsequently crushed, the slug fragments having a tamped density of 210 to 800 g/l, and c) the slug fragments are treated with one or more reactive compounds at 400 to 1100° C.
Abstract:
An amplifier optical fiber comprising a central core of a dielectric matrix doped with at least one element ensuring the amplification of an optical signal transmitted in the fiber and a cladding surrounding the central core and suitable for confining the optical signal transmitted in the core. The fiber also comprises metallic nanostructures suitable for generating an electronic surface resonance in the dielectric matrix of central core, the wavelength of said electronic surface resonance corresponding to an excitation level of the element ensuring the amplification.
Abstract:
A method for manufacturing an optical fiber, the method including the steps of providing a substrate tube; depositing a boron-free cladding layer; depositing a core comprising a glass including silica, and oxides of Al, Ge, Er, and Tm; collapsing the substrate tube to form a preform; and drawing the preform to yield optical fiber.
Abstract:
The specification describes rare earth doped fiber amplifier devices for operation in the extended L-band, i.e. at wavelengths from 1565 nm to above 1610 nm. High efficiency and flat gain spectra are obtained using a high silica based fiber codoped with Er, Al, Ge, and P and an NA of at least 0.15.
Abstract:
A method for manufacturing an optical article including the steps of providing a substrate tube; forming one or more cladding layers inside the substrate tube, the one or more cladding layers including an innermost cladding layer; forming a concentric fluorine reservoir adjacent to the innermost cladding layer; and forming a core adjacent to the fluorine reservoir and concentric with the one or more outer cladding layers. The fluorine concentration in the fluorine reservoir is higher than the fluorine concentration in either the core or the innermost cladding layer.
Abstract:
A sol-gel process for producing dry porous gel monoliths, e.g., silica glass monoliths, in which the successive process steps of gelling, aging and drying all occur within a mold formed of a selected porous material, e.g., graphite. The mold is inert to the gel solution and it has sufficient strength to withstand the temperatures and pressures encountered during the process. The mold and gel thereby can remain within a sealed autoclave during these process steps, and mechanical handling of the mold and the gel are minimized. This substantially enhances the process' efficiency. Alternatively, the mold can have a non-porous inner skin to enhance ease of cleaning of the mold, and of removal of the gel.
Abstract:
A light amplification optical fiber capable of suppressing a decrease in an amplification efficiency thereof ascribed to the concentration quenching of erbium ions, and the nonlinearity thereof is provided. At least one rare earth element, for example, Yb, which is other than the erbium ions, and which has an ion radius not smaller than 70% and not larger than 130% of that of erbium ions is doped to a core portion of an erbium ion-doped light amplification optical fiber.
Abstract:
A light amplification optical fiber capable of suppressing a decrease in an amplification efficiency thereof ascribed to the concentration quenching of erbium ions, and the nonlinearity thereof is provided. At least one rare earth element, for example, Yb, which is other than the erbium ions, and which has an ion radius not smaller than 70% and not larger than 130% of that of erbium ions is doped to a core portion of an erbium ion-doped light amplification optical fiber.
Abstract:
An amplifier optical fiber comprising a central core of a dielectric matrix doped with at least one element ensuring the amplification of an optical signal transmitted in the fiber and a cladding surrounding the central core and suitable for confining the optical signal transmitted in the core. The fiber also comprises metallic nanostructures suitable for generating an electronic surface resonance in the dielectric matrix of central core, the wavelength of said electronic surface resonance corresponding to an excitation level of the element ensuring the amplification.