Abstract:
A method for manufacturing an optical fiber, the method including the steps of providing a substrate tube; depositing a boron-free cladding layer; depositing a core comprising a glass including silica, and oxides of Al, Ge, Er, and Tm; collapsing the substrate tube to form a preform; and drawing the preform to yield optical fiber.
Abstract:
A thulium doped silicate glass composition which contains SiO2, Al2O3, and La2O3 emits visible and UV light when excited by infrared light. The glass composition may also contain GeO2 and Er2O3. When excited by infrared light of about 1060 nm, the glass emits visible light at fluorescent transitions of the Tm3null ions with major broad features at 365, 455, 472, 651, and 791 nm.
Abstract translation:含有SiO 2,Al 2 O 3和La 2 O 3的掺doped硅酸盐玻璃组合物在被红外光激发时发射可见光和UV光。 玻璃组合物还可以含有GeO 2和Er 2 O 3。 当由约1060nm的红外光激发时,玻璃在365nm,455nm,472nm,651nm和791nm处具有主要的广泛特征,在Tm 3+离子的荧光转变下发射可见光。
Abstract:
A method of making an erbium-doped optical fiber for use in optical amplifiers according to the present invention includes the step of providing a substrate tube. High purity silica-based cladding layers are deposited on the inside of the tube. A core glass that includes silica, Al, a non-fluorescent rare-earth ion, Ge, Er, and Tm is then deposited in the tube. The non-fluorescent rare-earth ion may be La and the core may further include F. The tube is then collapsed to form a preform. Finally, the preform is drawn to yield optical fiber. The core glass may be substantially homogeneous. The core may include at least two regions, wherein one region contains a substantially different Er to Tm ratio than the other region. Said regions may be in an annular arrangement. The core of such a waveguide may be made with multiple MCVD passes, multiple sol-gel passes or with multiple soot deposition, solution doping, and consolidation passes.
Abstract:
A new class of nanostructured RE-doped SiO2-base materials that display superior fluorescence properties is provided. In particular, high gain combined with a broad and flat spectral band width is observed in material composed of a high fraction of a nano-dispersed metastable silicate phase in a glassy SiO2 matrix, produced by partial devitrification (crystallization) of several glassy Al2O3/Er2O3- and Y2O3/Er2O3-doped SiO2 compositions. Also, a highly deconvoluted spectral emission, with several prominent peaks, is observed in completely devitrified material, consisting of a uniform nano-dispersion of an equilibrium silicate phase in a crystobalite SiO2 matrix. Such enhanced fluorescence properties were observed in heat treated nanopowders prepared by vapor-phase, solgel, rapid solidification, and spray-pyrolysis methods.
Abstract translation:提供了一类新型的具有优异荧光性能的纳米结构的RE掺杂SiO 2基体材料。 特别地,在通过部分失透反应产生的玻璃状SiO 2基体中的高分数纳米分散的亚稳态硅酸盐相组成的材料中观察到具有宽的和平坦的光谱带宽的高增益( 几个玻璃状的Al 2 O 3 / O 2 O 3 - 和Y 2的结晶, O 3组成的二氧化硅组合物。 此外,在完全失透的材料中观察到具有几个突出的峰的高度去卷积的光谱发射,由平底硅酸盐相在均匀的SiO 2基体中的均匀的纳米分散体组成。 在通过气相,溶胶凝胶,快速凝固和喷雾热解方法制备的热处理纳米粉末中观察到这种增强的荧光性质。
Abstract:
A co-doped silicate optical waveguide having a core including silica, and oxides of aluminum, germanium, erbium and thulium. The composition concentrations are: Er from 15 ppm to 3000 ppm; Al from 0.5 mol % to 12 mol %; Tm from 15 ppm to 10000 ppm; and Ge from 1 mol % to 20 mol %. In a specific embodiment, the concentration of Er is from 150 ppm to 1500 ppm; Al is from 2 mol % to 8 mol %; and Tm is from 15 ppm to 3000 ppm. A boron-less cladding surrounds the core.
Abstract:
An optical waveguide including a core having silica, Al, a non-fluorescent rare-earth ion, Ge, Er, and Tm. The non-fluorescent rare-earth ion may be La. Exemplary compositions concentrations are Er is from 15 ppm to 3000 ppm, Al is from 0.5 mol % to 12 mol %, La is less than or equal to 2 mol %, Tm is from 15 ppm to 10,000 ppm; and the Ge is less than or equal to 15 mol %. The core may further include F. An exemplary concentration of F is less than or equal to 6 anion mol %.
Abstract:
A preparation method of rare earth ions doped alkali metal silicate luminescent glass is provided. The steps involves: step 1, mixing the source compounds of cerium, terbium and alkali metals and putting the mixture into solvent to get a mixed solution; step 2, impregnating the nanometer micropores glass with the mixed solution obtained in step 1; step 3: calcining the impregnated nanometer micropores glass obtained in step 2 in a reducing atmosphere, cooling to room temperature, then obtaining the cerium and terbium co-doped alkali metal silicate luminescent glass. Besides, the rare earth ions doped alkali metal silicate luminescent glass prepared with aforesaid method is also provided. In the prepared luminescent glass, cerium ions can transmit absorbed energy to terbium ions under the excitation of UV light due to the co-doping of cerium ions. As a result, the said luminescent glass has higher luminous intensity than the glass only doped with terbium.
Abstract:
A germanium-free co-doped silicate optical waveguide in accordance with the present invention includes a core material comprising silica, and oxides of aluminum, lanthanum, erbium and thulium, wherein the concentration of Er is from 15 ppm to 3000 ppm; Al is from 0.5 mol % to 15 mol %; La is less than 2 mol %; and Tm is from 150 ppm to 10000 ppm. In an exemplary specific embodiment the concentration of Al is from 4 mol % to 10 mol %; and the concentration of Tm is from 150 ppm to 3000 ppm. The core may further include F. In an exemplary embodiment, the concentration of F is less than or equal to 6 mol %. The waveguide may be an optical fiber, a shaped fiber or other light-guiding waveguides. An amplifier according to the present invention includes the optical fiber described above.
Abstract:
A co-doped silicate optical waveguide having a core including silica, and oxides of aluminum, germanium, erbium and thulium. The composition concentrations are: Er from 15 ppm to 3000 ppm; Al from 0.5 mol % to 12 mol %; Tm from 15 ppm to 10000 ppm; and Ge from 1 mol % to 20 mol %. In a specific embodiment, the concentration of Er is from 150 ppm to 1500 ppm; Al is from 2 mol % to 8 mol %; and Tm is from 15 ppm to 3000 ppm. A boron-less cladding surrounds the core.
Abstract:
Optical fiber composed of a glass doped with at least laser-active ions of an element from the rare earths. An optical fiber of glass, preferably a HMF glass, doped with Tm.sup.3+ is operated at 1.48 .mu.m as a fiber laser or amplifier on the laser transition .sup.3 F.sub.4 -.sup.3 H.sub.4. Since this thereby involves a self-saturating transition, the terminal level is emptied in accelerated fashion for a continuous wave mode by co-doping with de-activators, preferably Ho.sup.3+, Tb.sup.3+, Eu.sup.3+ and/or Pr.sup.3+ ions. The pump light wavelength can be selected from the wavelength range from 700 through 890 nm of GaAlAs emission. The optical fiber can be used in optical amplifiers or fiber amplifiers.