Abstract:
Biofoam is a rigid, microcellular organic foam made from organic materials derived from natural products and biological organisms. Starting materials include agar, agarose, gelatin, algin, alginates, gellan gum, and microcrystalline cellulose. The organic material is dissolved in a polar solvent, typically water, and the mixture is gelled. The water in the gel pores is replaced at least once with another solvent to reduce the pore size of the final biofoam. The solvent in the gel pores may be replaced several times. After the final replacement of solvent, the gel is frozen and freeze-dried to form a biofoam. Translucent biofoams are formed by selecting a final solvent that forms very small crystals. A variety of crystalline, fibrous, amorphous, or metallic additives may be incorporated into the foam structure to produce lightweight composite materials with enhanced strength and insulating properties.
Abstract:
An aerogel that includes an open-cell structure and a polymer matrix is disclosed. The polymer matrix can include a branched polyimide polymer having a degree of branching of at least 0.5. The polymer matrix can contain less than 5% by weight of crosslinked polymers.
Abstract:
Aerogel compositions, methods for preparing the aerogel compositions, articles of manufacture that include or are made from the aerogel compositions are described and uses thereof. The aerogels include a branched polyimide matrix with little to no crosslinked polymers.
Abstract:
Systems and methods for producing aerogel materials are generally described. In certain cases, the methods do not require supercritical drying as part of the manufacturing process. In some cases, certain combinations of materials, solvents, and/or processing steps may be synergistically employed so as to enable manufacture of large (e.g., meter-scale), substantially crack free, and/or mechanically strong aerogel materials.
Abstract:
The present invention relates to a method for producing a porous material comprising the steps of; (a) providing a C/W emulsion comprising an aqueous phase, a matrix building material, a surfactant and liquid CO2 phase; (b) at least partially freezing the aqueous phase; (c) gasifying CO2 from the liquid CO2 phase to form an intermediate porous material; (d) venting gasified CO2 from the intermediate porous material; and (e) freeze drying the intermediate porous material at least substantially to remove the aqueous phase and form the porous material. The present invention also relates to a porous material obtainable by the method.
Abstract:
Film, fibre, foam and adhesive materials are produced from soluble S-sulfonated keratins. Once formed, the films, fibres, foams or adhesives are treated to modify the properties of the materials, in particular to improve the wet strength of the materials. Treatments used include removal of the S-sulfonate group by treatment with a reducing agent, treatment with an acid or treatment with a common protein crosslinking agent or treatment with a reduced form of keratin or keratin protein. The films are made by solvent casting a solution of S-sulfonated keratin proteins, the foam made by freeze-drying a solution of S-sulfonated keratin proteins and the fibres made by extruding a solution of a S-sulfonated keratin protein.
Abstract:
The present invention relates to porous beads and to methods of production thereof, in particular to a method of producing hydrophilic polymeric beads by freeze-drying a droplet containing a polymeric material in a continuous phase of an oil-in-water (O/W) emulsion.
Abstract:
A method for preparing a highly porous, high surface area non-degradable material, comprises the steps of mixing a non-degradable polymer with a solvent or mixture of solvents; gelling the mixture; and treating the gel under conditions whereby a substantially solvent free porous structure is created having a porosity greater than about 80%. The resultant material is mechanically strong and has an architecture comprising at least one of nano fibrous, micro fibrous, non fibrous, complex porous structure with nano fibrous architecture, and mixtures thereof.
Abstract:
The present invention relates to a porous structure of prepared fungal cell wall components, whereby the cell wall material is derived from a fungi selected from the division Zygomycota, the fungal material in the form of a suspension is subjected to drying in such a way that the material obtains a porous structure, the structure has a liquid absorbing property which is at least 15 ml/g of 1% NaCl (aq) and it has a liquid transporting ability of water, at a density of 0.01 to 0.03 g/cm3, in a horizontal direction of at least 10 mm during the first minute of absorption and in a vertical direction of at least 5 mm during a first minute of absorption.
Abstract translation:本发明涉及制备的真菌细胞壁组分的多孔结构,由此细胞壁材料衍生自选自分枝菌纲的真菌,以悬浮液形式的真菌材料以这样的方式进行干燥: 材料获得多孔结构,该结构具有至少15ml / g的1%NaCl(aq)的液体吸收性能,并且其具有0.01至0.03g / cm 3的密度的水的液体输送能力, 在吸收的第一分钟期间的水平方向为至少10mm,在吸收的第一分钟期间在垂直方向为至少5mm。