Abstract:
A process for improving optical properties of high-yield pulp (HYP) for producing paper products with superior brightness. Optical brightening agents (OBAs) can effectively improve the optical properties of high-yield pulp (HYP). The present process involves incorporating the OBAs into the alkaline peroxide bleaching process. By combining peroxide bleaching with an optical brightening agent, one can decrease the bleaching cost to reach the same brightness target. Some key advantages of adding OBA to HYP at the pulp mill over the conventional wet-end addition of OBA include: i) the quenching effect on OBA by the wet-end cationic polymers such as PEI is decreased by fixing OBA on HYP fibers; ii) the negative impact of metal ions in the white water system on the OBA performance is minimized when OBA is pre-adsorbed and fixed on HYP fibers; iii) the photo-yellowing (color reversion) of HYP and HYP-containing paper sheets is decreased when more OBA is on HYP fibers to protect them from harmful UV radiation.
Abstract:
A method is described controlling enzymatic decomposition of peroxide comprising contacting a composition containing a peroxide decomposing enzyme with an aldehyde functional polymer added in an amount effective to control the enzyme. There also is a method described for bleaching cellulose pulp, such as recycled paper pulp or other pulps, with an aldehyde functional polymer introduced in an amount effective to control peroxide decomposing enzymes present in the pulp being bleached. Paper products containing the aldehyde functional polymer used to control peroxide decomposing enzymes in a bleaching treatment of cellulose pulp are also provided.
Abstract:
A modified kraft pulp fiber with unique properties is provided. The modified fiber can be a modified bleached kraft fiber that is almost indistinguishable from its conventional counterpart, except that it has a low degree of polymerization (DP). Methods for making the modified fiber and products made from it are also provided. The method can be a one step acidic, iron catalyzed peroxide treatment process that can be incorporated into a single stage of a multi-stage bleaching process. The products can be chemical cellulose feedstocks, microcrystalline cellulose feedstocks, fluff pulps and products made from them.
Abstract:
An acetyl xylan esterase variant having perhydrolytic activity is provided for producing peroxycarboxylic acids from carboxylic acid esters and a source of peroxygen. More specifically, a Thermotoga maritima acetyl xylan esterase gene was modified using error-prone PCR and site-directed mutagenesis to create an enzyme catalyst characterized by an increase in specific activity. The variant acetyl xylan esterase may be used to produce peroxycarboxylic acids suitable for use in a variety of applications such as cleaning, disinfecting, sanitizing, bleaching, wood pulp processing, and paper pulp processing applications.
Abstract:
The invention relates to a method for functionalising carbohydrates, that comprises at least one step during which the carbohydrates react with an oxidizing agent in the presence of copper-phenanthroline complex. The invention more particularly relates to a method for functionalising cellulose fibers for the paper industry.
Abstract:
The present invention relates to an improved process for processing chemical cellulose pulp wherein carboxymethylcellulose (CMC) is added during the bleaching step of said pulp. The addition of CMC in this step of the bleaching process provides a pulp with improved physical, chemical and mechanical properties.
Abstract:
Provided are a method for producing bleached pulp, comprising processing unbleached pulp obtained by cooking a lignocellulose substance, for alkali-oxygen bleaching followed by treatment with peroxomonosulfuric acid and thereafter by multistage chlorine-free bleaching treatment starting from chlorine dioxide treatment; a method for producing bleached pulp, comprising processing the unbleached pulp for alkali-oxygen bleaching followed by chlorine-free bleaching treatment or totally chlorine-free bleaching treatment to bleach it to a degree of brightness of from 70 to 89%, and further followed by treatment with peroxomonosulfuric acid; and paper produced by the use of the bleached pulp produced according to these production methods, at a papermaking pH of at most 6. Provided are the efficient production methods for bleached pulp in which the colour reversion resistance is enhanced in chlorine-free bleaching and the bleaching cost increase is prevented, and the paper produced by the use of the bleached pulp according to an acid papermaking process.
Abstract:
The present invention provides a xylanase, or a modified xylanase enzyme comprising at least one substituted amino acid residue at a position selected from the group consisting of amino acid 11, 116, 118, 144 and 161, the position determined from sequence alignment of the modified xylanase with Trichoderma reesei xylanase II amino acid sequence. The xylanases described herein exhibit improved thermophilicity, alkalophilicity, expression efficiency, or a combination thereof, in comparison to a corresponding native xylanase.
Abstract:
The present invention provides a xylanase, or a modified xylanase enzyme comprising at least one substituted amino acid residue at a position selected from the group consisting of amino acid 11, 116, 118, 144 and 161, the position determined from sequence alignment of the modified xylanase with Trichoderma reesei xylanase II amino acid sequence. The xylanases described herein exhibit improved thermophilicity, alkalophilicity, expression efficiency, or a combination thereof, in comparison to a corresponding native xylanase.
Abstract:
The present invention discloses methods of bleaching chemical pulp that use xylanase enzymes after chemical bleaching. The method comprises the steps of carrying out a chlorine dioxide stage to produce a partially bleached pulp, treating the partially bleached pulp with a xylanase enzyme, optionally in the presence of oxygen and hydrogen peroxide, in a mild extraction stage, then bleaching the pulp with a second chlorine dioxide stage. The method allows the mill to decrease the usage of sodium hydroxide or other alkali, while decreasing the use of chlorine dioxide, and possibly improving the yield and strength of the pulp, while maintaining a similar level of bleached brightness of the pulp. The pulp bleaching method of the present invention may be performed in a pulp mill as part of a complex pulp bleaching process.