Abstract:
An acetyl xylan esterase variant having perhydrolytic activity is provided for producing peroxycarboxylic acids from carboxylic acid esters and a source of peroxygen. More specifically, a Thermotoga maritima acetyl xylan esterase gene was modified using error-prone PCR and site-directed mutagenesis to create an enzyme catalyst characterized by an increase in specific activity. The variant acetyl xylan esterase may be used to produce peroxycarboxylic acids suitable for use in a variety of applications such as cleaning, disinfecting, sanitizing, bleaching, wood pulp processing, and paper pulp processing applications.
Abstract:
An acetyl xylan esterase variant having perhydrolytic activity is provided for producing peroxycarboxylic acids from carboxylic acid esters and a source of peroxygen. More specifically, a Thermotoga maritima acetyl xylan esterase gene was modified using error-prone PCR and site-directed mutagenesis to create an enzyme catalyst characterized by an increase in specific activity. The variant acetyl xylan esterase may be used to produce peroxycarboxylic acids suitable for use in a variety of applications such as cleaning, disinfecting, sanitizing, bleaching, wood pulp processing, and paper pulp processing applications.
Abstract:
An acetyl xylan esterase variant having perhydrolytic activity is provided for producing peroxycarboxylic acids from carboxylic acid esters and a source of peroxygen. More specifically, a Thermotoga maritima acetyl xylan esterase gene was modified using error-prone PCR and site-directed mutagenesis to create an enzyme catalyst characterized by an increase in specific activity. The variant acetyl xylan esterase may be used to produce peroxycarboxylic acids suitable for use in a variety of applications such as cleaning, disinfecting, sanitizing, bleaching, wood pulp processing, and paper pulp processing applications.
Abstract:
An acetyl xylan esterase variant having perhydrolytic activity is provided for producing peroxycarboxylic acids from carboxylic acid esters and a source of peroxygen. More specifically, a Thermotoga maritima acetyl xylan esterase gene was modified using error-prone PCR and site-directed mutagenesis to create an enzyme catalyst characterized by an increase in specific activity. The variant acetyl xylan esterase may be used to produce peroxycarboxylic acids suitable for use in a variety of applications such as cleaning, disinfecting, sanitizing, bleaching, wood pulp processing, and paper pulp processing applications.
Abstract:
An acetyl xylan esterase variant having perhydrolytic activity is provided for producing peroxycarboxylic acids from carboxylic acid esters and a source of peroxygen. More specifically, a Thermotoga maritima acetyl xylan esterase gene was modified using error-prone PCR and site-directed mutagenesis to create an enzyme catalyst characterized by an increase in specific activity. The variant acetyl xylan esterase may be used to produce peroxycarboxylic acids suitable for use in a variety of applications such as cleaning, disinfecting, sanitizing, bleaching, wood pulp processing, and paper pulp processing applications.
Abstract:
A process is provided for rapidly producing target concentrations of peroxycarboxylic acids from carboxylic acid esters. More specifically, carboxylic acid esters are reacted with a source of peroxygen, such as hydrogen peroxide, in the presence of an enzyme catalyst comprising an enzyme having identity to an acetyl xylan esterase from Lactococcus lactis having perhydrolysis activity. The polypeptide is an enzyme structurally classified as a member of the carbohydrate esterase family 7 (CE-7). The peroxycarboxylic acids produced by the present process can be used in disinfecting, bleaching, and other laundry care applications. Compositions comprising the reaction components and the peroxycarboxylic acids produced by the process are also provided.
Abstract:
An acetyl xylan esterase variant having perhydrolytic activity is provided for producing peroxycarboxylic acids from carboxylic acid esters and a source of peroxygen. More specifically, a Thermotoga maritima acetyl xylan esterase gene was modified using error-prone PCR and site-directed mutagenesis to create an enzyme catalyst characterized by an increase in specific activity. The variant acetyl xylan esterase may be used to produce peroxycarboxylic acids suitable for use in a variety of applications such as cleaning, disinfecting, sanitizing, bleaching, wood pulp processing, and paper pulp processing applications.
Abstract:
An acetyl xylan esterase variant having perhydrolytic activity is provided for producing peroxycarboxylic acids from carboxylic acid esters and a source of peroxygen. More specifically, a Thermotoga maritima acetyl xylan esterase gene was modified using error-prone PCR and site-directed mutagenesis to create an enzyme catalyst characterized by an increase in specific activity. The variant acetyl xylan esterase may be used to produce peroxycarboxylic acids suitable for use in a variety of applications such as cleaning, disinfecting, sanitizing, bleaching, wood pulp processing, and paper pulp processing applications.
Abstract:
A process is provided for producing peroxycarboxylic acids from carboxylic acid esters. More specifically, carboxylic acid esters are reacted with an inorganic peroxide, such as hydrogen peroxide, in the presence of an enzyme catalyst having perhydrolysis activity. The present perhydrolase catalysts are classified as members of the carbohydrate esterase family 7 (CE-7) based on the conserved structural features. Further, disinfectant formulations comprising the peracids produced by the processes described herein are provided.
Abstract:
A process is provided for producing target concentrations of peroxycarboxylic acids from carboxylic acid esters. More specifically, carboxylic acid esters are reacted with an inorganic peroxide, such as hydrogen peroxide, in the presence of an enzyme catalyst having perhydrolysis activity under conditions where control of reaction pH by selection of buffer concentration and concentration of perhydrolase and reactants produces a targeted concentration of peroxycarboxylic acids. The present perhydrolase catalysts are classified as members of the carbohydrate esterase family 7 (CE-7) based on the conserved structural features. Further, disinfectant formulations comprising the peracids produced by the processes described herein are provided, as are corresponding methods of use.