Abstract:
A hydraulically controlled accumulator-chamber valve has a closing element and a tappet. The closing element is prestressed via a first compression spring and seals a valve seat in a valve body. The tappet reaches through a leadthrough in the valve body and is moved by an accumulator piston. The accumulator piston is loaded by a second compression spring. The tappet is moved to press the closing element out of the valve seat when there is a specified balance of forces between the spring prestressing forces and a hydraulically active force. The closing element and the tappet are configured as a single-piece component, in order to guide the tappet in the leadthrough in a longitudinally movable manner. The tappet bears against an end face of the accumulator piston during an opening movement.
Abstract:
A hydraulic accumulator includes a housing with a pair of ends, a piston slidably disposed in the interior of the housing, and a biasing member that urges the piston towards one end of the housing. The accumulator further includes a fluid flow control device in communication with a fluid chamber defined by a face of the piston and the interior surface of the housing. The desired amount of fluid entering and exiting the fluid chamber is controlled by the fluid flow control device according to the desired pressure within the fluid chamber as determined by a pressure sensor which is also in communication with the fluid chamber.
Abstract:
A volume accumulator (15), including a guide housing (33), a separating element (34) and a spring element (35). The separating element (34) is slidably mounted on an inner lateral face of the guide housing (33) and the spring element (35) is seated against the separating element (34) on one side and on the guide housing (33) on the other side. According to the invention, at least one indentation (47) is provided on the guide housing (33), with the indentation protruding into the guide housing (33). In the direction of the spring element (35), the indentation (47) has an open end against which the spring element (35) is seated.
Abstract:
An accumulator assembly for a motor vehicle powertrain includes an armature and a follower. Together the armature and the follower can selectively lock together. The accumulator assembly may include a biasing member and a solenoid. When the solenoid is de-energized, the biasing member pushes the armature towards the follower to lock the armature and the follower together. When the solenoid is energized, the armature is magnetically drawn towards the solenoid and away from the follower to unlock the two components and to compress the biasing member.
Abstract:
The invention relates to a mobile hydraulic system for a hybrid vehicle, comprising a hydraulic accumulator device (22), which comprises a high-pressure accumulator chamber (34) and a low-pressure accumulator chamber (35), between which a hydraulic drive unit is connected, wherein the hydraulic drive unit is used to convey an incompressible fluid from the low-pressure accumulator chamber (35) into the high-pressure accumulator chamber (34) in an accumulator operating state, wherein the incompressible fluid can be discharged from the high-pressure accumulator chamber into the low-pressure accumulator chamber (35) in a drive operating state in order to hydraulically drive the hydraulic drive unit. In order to further reduce the space requirement for the hydraulic accumulator device in the mobile hydraulic system, the low-pressure accumulator chamber (35) and the high-pressure accumulator chamber (34) are fluidically separated by a separating device (36) and arranged in a common accommodating chamber (25) in which a variable compensating volume (50) having a compressible fluid is also arranged.
Abstract:
A device for the pulsed release of an amount (3) of fluid that is stored in a storage housing (2), in particular for implementing a start-stop function in automatic transmissions, with a piston (5) that is supported against a first energy storage device (4) and that, with the capacity to move within the storage housing (2), limits in conjunction with the latter the amount (3) of fluid that can be held and that, when triggered by an actuation means (6) and released by a locking means (7), pushes the amount (3) of fluid out of the storage housing (2) in a pulsed manner, the locking means (7) having individual catch means (8) that in the locked position keep the piston (5) in its pretensioned position, and that, when actuated by the actuation means (6), release the piston (5) in a release position, is characterized in that in any travel position of the piston (5), the catch means (8) are at least partially in contact with the inside wall of the piston (5) facing them, and that for locking of the piston (5), the catch means (8) act in that end region (9) of the piston (5) that is located adjacent to the stored amount (3) of fluid.
Abstract:
An open port is provided on an inner peripheral surface of the cylinder bore of the reservoir apparatus and the port is exposed to the exterior of the reservoir apparatus. A hollow portion is formed concentrically with the port on a reservoir body. An annular thin portion is formed between the inner peripheral surface of the cylinder bore and the hollow portion surrounding the port in a radial direction. The thin portion is outwardly deflected and deformed by being pushed outwardly in a radial direction centering on the port in a range narrower than the inner diameter of the hollow portion. Thus, the opening of the port is outwardly sunk from the inner peripheral surface of the cylinder bore thereby to form a curved surface at a root portion of the thin portion on the inner peripheral surface of the cylinder bore.
Abstract:
An accumulator for a hydraulic system, wherein the accumulator comprises a liner, a piston and a housing, that defines a pressure chamber, for receiving hydraulic fluid at high pressure, wherein the piston is biased towards an end position of the pressure chamber for interacting with the hydraulic fluid in the pressure chamber, and the piston is movable in a predetermined range for accumulating hydraulic fluid. The accumulator has at least one outlet port in a sidewall of the liner, which outlet port is covered by the piston in the predetermined range and is uncovered when the piston has moved a predetermined distance from the end position. A hydraulic system is also provided that comprises the above accumulator and an all-wheel drive system comprising the above hydraulic system. A method for de-airing an accumulator according to above is also provided.
Abstract:
In one aspect of the present invention, an energy storage system has an elastic hydraulic fluid vessel with an internal variable volume and being coupled to a hydraulic rotary mechanism. The elastic hydraulic fluid vessel has an elastic material adapted to store a potential energy within its fibers when the internal volume is increased by a hydraulic fluid. The hydraulic rotary mechanism is adapted to be accelerated by the release of the potential energy of the fibers of the elastic vessel by ejecting the hydraulic fluid from the internal variable volume into the rotary mechanism.
Abstract:
An impedance shaping element (or more simply, an impedance shaper) physically alters or shapes the mechanical impedance of a drive system as it appears from an interface and facilitates use of feedback control to improve performance by altering or shaping a dynamic coupling between an interface and a control system. For example, the impedance shaper can be used to adjust a coupling value from a first value to a second different value. In one embodiment, an impedance shaper controls the compliance, damping and inertia characteristics of fluid within a fluid path.