Abstract:
Device and method for measuring phase retardation distribution and fast axis azimuth angle distribution of birefringence sample in real time. The device consists of a collimating light source, a circular polarizer, a diffractive beam-splitting component, a quarter-wave plate, an analyzer array, a charge coupled device (CCD) image sensor and a computer with an image acquisition card. The method can measure the phase retardation distribution and the fast axis azimuth angle distribution of the birefringence sample in real time and has large measurement range. The measurement result is immune to the light-intensity fluctuation of the light source.
Abstract:
Device and method for measuring phase retardation distribution and fast axis azimuth angle distribution of birefringence sample in real time. The device consists of a collimating light source, a circular polarizer, a diffractive beam-splitting component, a quarter-wave plate, an analyzer array, a charge coupled device (CCD) image sensor and a computer with an image acquisition card. The method can measure the phase retardation distribution and the fast axis azimuth angle distribution of the birefringence sample in real time and has large measurement range. The measurement result is immune to the light-intensity fluctuation of the light source.
Abstract:
An apparatus and system for use in determining location of a celestial body are presented. The apparatus comprises: a polarizer comprising an array of polarized light filter cells and a light sensor array. The array of polarized light filter cells comprises at least a first polarization direction and a second polarization direction different from said first polarization direction. And the polarizer thereby produces polarized light of at least first and second different polarizations. The light sensor array is configured to receive the polarized light from the polarizer and produce data indicative of a pattern of at least one of light polarization intensity and direction. The pattern is indicative of at least one of azimuth and elevation of the celestial body to be located.
Abstract:
A method for determining and displaying polarization profiles of points in a scene from a single imaging detector array, which utilizes a filter system comprised of a retarder, four linear polarizers, four lenses, a color filter, camera lens and CCD video camera. Light from points in a scene are transmitted through the system and exits with attenuated intensities unique for each wavelength of the light. A narrowband color filter selects the wavelength of interest. The four lenses in the system produce four images of the scene, which are recorded as a single CCD-image. The attenuated intensities in each of the four scene-images are used to calculate the Stokes parameters for selected points in the scene for the selected wavelength. A computer program separates the four scene-images in the CCD-image, crops, registers them and calculates the Stokes parameters for each point in the cropped scene.
Abstract:
An imaging device and method are provided. Light from an object is provided as a plurality of sets of light beams to a phase difference array having a plurality of elements. The phase difference array is configured to provide different optical paths for light included within at least some of a plurality of sets of light beams. The light from the phase difference array is received at an imaging element array. The imaging element array includes a plurality of imaging elements. Information obtained from hyperspectral imaging data based on output signals of the imaging element array can be displayed.
Abstract:
Prism-coupling systems and methods for characterizing large depth-of-layer waveguides are disclosed. The systems and methods utilize a coupling prism having a coupling angle α having a maximum coupling angle αmax at which total internal reflection occurs. The prism angle α is in the range 0.81αmax≦α≦0.99αmax. This configuration causes the more spaced-apart lower-order mode lines to move closer together and the more tightly spaced higher-order mode lines to separate. The adjusted mode-line spacing allows for proper sampling at the detector of the otherwise tightly spaced mode lines. The mode-line spacings of the detected mode spectra are then corrected via post-processing. The corrected mode spectra are then processed to obtain at least one characteristic of the waveguide.
Abstract:
Apparatus and methods for measuring mode spectra for ion-exchanged glass substrates having a steep index region are disclosed. An interfacing fluid is provided between the coupling prism and the glass substrate. The interfacing fluid thickness is selected so that the variation in modal birefringence with fluid thickness is reduced to an acceptable level. The coupling prism can include a prism coating on the coupling surface so that the substrate-prism interface includes the prism coating. The coupling prism can also include stand-off members that serve to define the thickness of the interfacing fluid.
Abstract:
A method for determining and displaying polarization profiles of points in a scene from a single imaging detector array, which utilizes a filter system comprised of a retarder, four linear polarizers, four lenses, a color filter, camera lens and CCD video camera. Light from points in a scene are transmitted through the system and exits with attenuated intensities unique for each wavelength of the light. A narrowband color filter selects the wavelength of interest. The four lenses in the system produce four images of the scene, which are recorded as a single CCD-image. The attenuated intensities in each of the four scene-images are used to calculate the Stokes parameters for selected points in the scene for the selected wavelength. A computer program separates the four scene-images in the CCD-image, crops, registers them and calculates the Stokes parameters for each point in the cropped scene.