Abstract:
A method and apparatus for measuring the force applied by a first member coupled to a second member by a connecting body, by: transmitting a cyclically-repeating energy wave through the connecting body from a first location thereon to a second location thereon; measuring the transit time of the cyclically-repeating energy wave from the first location to the second location; and utilizing the measured transit time to produce a measurement of the force. In the preferred described embodiment, the connecting body is a fastening plate which fastens a drive shaft to a driven shaft and measures the torque output of the drive shaft.
Abstract:
Non-contact torque, thrust, strain, and other data sensing of a valve actuator or valve is disclosed. A sensor may include a surface acoustic wave device.
Abstract:
A wireless sensor is disclosed, which includes a substrate upon which the wireless sensor can be configured. The wireless sensor includes a plurality of surface acoustic wave (SAW) sensing elements configured in parallel with one another upon the substrate, wherein one or more of the SAW sensing elements is responsive to a wireless frequency range that differs from that of a wireless frequency range of at least one other SAW sensing element among the group of SAW sensing elements. It is this parallelism that permits all of the SAW sensing elements to receive the same strain when pressure is applied thereon. In doing so, the capability for three separate interrogators to measure strain is provided. At any one location, however, only one style of interrogators can be employed, rendering two of the three SAW sensing elements useless, without interfering with the one SAW sensing element that is useful in order to permit a wireless interrogation of the wireless sensor despite varying international frequency standards thereof.
Abstract:
A surface acoustic wave (SAW) sensor and an interrogator that transmits a noise source to the sensor for receiving an interrogation signal that is processed and compared to the source signal provides pressure and temperature measurements. One SAW sensor a single interdigital transducer serving as both an input and an output transducer for generating and detecting a SAW, and coded reflectors in a mirrored arrangement opposing the single interdigital transducer. The piezoelectric substrate is supported in a hermetically sealed package such that pressure on the package causes distortion of the substrate transducer surface and thus SAW velocity changes that reflect changes in pressure. Characteristic temperature coefficients of delay for the substrate are directly translated into a temperature value.
Abstract:
A pressure monitor has a base and a lid secured to the base to define a substantially fluid tight chamber. At least part of the lid is flexible and forms a diaphragm which deflects responsive to changes in fluid pressure surrounding the monitor. A projection provided on the diaphragm transmits movement thereof to a distortable substrate located within the chamber. A first SAW device is mounted on the distortable substrate, and at least a second and third SAW device are mounted within the chamber. The second SAW device carried on a reference substrate section has its direction of propagation inclined at an angle to the direction of propagation of at least one of the first and third SAW devices. This way movement of the diaphragm induced by a change in pressure in the zone surrounding the monitor results in distortion of the distortable substrate, which is measurable by the SAW device mounted thereon, without distorting said reference substrate section.
Abstract:
The present invention provides a system 10 for measuring and remotely monitoring strain in an element 1 having a strain sensor 20, a telemetry circuit 40 for transmitting strain data to a remote location, and a reader module 60 for transmitting energy to the telemetry circuit and receiving said data.
Abstract:
A rolling bearing which has as rolling bearing components one bearing race with a first running surface, a second bearing race with a second running surface opposed to the first surface, and rolling elements arranged between the running surfaces. At least one sensing unit is integrated into the rolling bearing components. The sensing unit can be interrogated by radio via antennas or can be connected to an interrogator by a cable. The sensing unit uses at least one component operating on the SAW or BAW principle to sense changes in length and/or changes in temperature in the material of the rolling bearing component and sends the result of the measurement after the arrival of a radio signal via the antenna or via a cable.
Abstract:
A pneumatic vehicle tire includes a carcass, a bead with a bead core arranged in the bead, and a first sensor located within the bead. The first sensor delivers signals which are correlated to frictional forces transmitted by the pneumatic vehicle tire during operation. This sensor has a first end and a second end, wherein the first end includes a heel attached to the bead core and the second end extends radially outward from the bead core within the tire. A plurality of such sensors can be included in each tire, some for measuring longitudinal forces in a circumferential direction of the tire and others for measuring lateral forces in an axial direction of the tire.
Abstract:
A sensor developing a digital output in response to force induced deflection in which the deflection is of a beam formed to have, under stress, a surface undulate in both compression and tension. The signal is developed from piezoelectric transducers connected in a pair of oscillator circuits utilizing surface acoustic wave paths through, respectively, the tension and the compression portions of the beam surface. The frequencies of the oscillators are compared and the frequency difference resulting from beam deflection is sent as a signal to a counter to give a digital read out of the force causing the deflection. The beam is formed of steel and the piezoelectric surface for the surface waves and the interdigitated conductors forming the transducers are deposited by thin film techniques on the beam.
Abstract:
Non-contact torque, thrust, strain, and other data sensing of a valve actuator or valve is disclosed. A sensor may include a surface acoustic wave device.