Abstract:
Diagnostic system including a sensor device with a sensor for generating signals corresponding to a first operational condition, a control device with a timer and function for performance of measurements, and a signal transmission device. The system includes a device for determination of a second operational condition of the system component and configured where the sensor value of the signal transmission device corresponding to the first operational condition is furnished when the sensor value corresponding to a second operational condition of the transmission mechanism is higher or lower than a comparative value, and housing component of a lubricant container and in particular closure device for sealing an opening of such a housing component from a lubricant which is present in the operational use thereof in an internal space thereof, having arranged therein: at least one sensor device comprising at least one sensor for determining the water content in the lubricant.
Abstract:
Method for communicating information by infrared radiation between a control command transmitter for a motorized product for closure, privacy or solar protection in a building and a control command receiver, comprising the transmission of a communication frame including: a preamble signal consisting of the repetition of pulses of a first type, and a data signal, the data being translated into the form of pulses of a second type, wherein the preamble signal and the data signal are modulated at the same frequency and wherein the data signal is separated from the preamble signal by a signal-free period having a duration of greater than twice the maximum duration separating two successive pulses of the second type.
Abstract:
In a method for wireless communication between a control unit and an electronic housing mounted on a vehicle member, information for the electronic housing is transmitted in the form either of continuous signals, or of signals modulated by encoded data. Each electronic housing includes a switching strategy between reception modes for the two types of signals, including establishing a permanent standby state for continuous signal reception and, upon the reception of a continuous signal, controlling a switchover to the modulated-signal reception mode for a time T, after which the electronic housing processes the data of the potential detected modulated signal and, if no such modulated signal is detected, processes the continuous signal at the origin of the switchover. Furthermore, after the time T, a reverse switchover control to the permanent standby state is delivered.
Abstract:
A remote control with a solar-powered battery, a remote body includes the control panel. The control panel has a plurality of buttons. The solar-powered battery module is disposed in the remote and comprises the solar panel, the control unit and the storage unit. The solar panel is a rigid or flexible solar panel and is used for receiving light energy. The wireless control module disposed in the remote comprises the transmitting unit, the sensing unit and the activating unit. Therefore, the solar-powered battery module converts and stores the light energy and provides power to the wireless control module, thereby providing energy savings and environmental conservation benefits.
Abstract:
A two-way vehicle communication system has been developed that includes at least one vehicle, at least one vehicle data collection point, at least one operations data supply system, and at least one data communication system, wherein the data communication system is operatively coupled to the at least one vehicle, the at least one vehicle data collection point, the at least one operations data supply system or a combination thereof. A method of monitoring a vehicle using a two-way vehicle communication system has been developed that includes: providing at least one vehicle, providing at least one vehicle data collection point, providing at least one operations data supply system, and providing at least one data communication system, wherein the data communication system is operatively coupled to and communicates with the at least one vehicle, the at least one vehicle data collection point, the at least one operations data supply system or a combination thereof.
Abstract:
A control arrangement is provided with: a transmitting device (10) and a receiving device (20). The receiving device (20) has a receive unit (5), a control device (6), and an energy consumer (7) and the transmitting device (10) has an energy converter (2), which converts primary energy into electrical energy, and a supplying device (12, 13; 18), which supplies the primary energy to the energy converter, and a transmit unit (3). The converted energy is provided for operating the transmit unit, which transmits information to the receiving device, and wherein the supplying device can be activated by means of a key device (11) and the receiving device (5) is connected to the control device (6) and the energy load (7), such that the control device (6) controls the energy consumption of the energy load (7) based on the reception of the information.
Abstract:
A distinct dealing shoe having no shuffling functionality receives shuffled, randomized or ordered group of cards. The cards may be mechanically moved one at a time from a receiving area for the deck to a buffer area where more than one card is temporarily stored. The cards in the buffer area are then mechanically moved to a card delivery area where the cards may be manually removed, one-at-a-time, by a dealer. The cards are read one-at-a-time inside of the dealing shoe, either before the buffer area or after leaving the buffer area, but preferably before the cards are being manually removed from the card delivery area. The information from the card reading may be used for game tracking, hand tracking, player information, and other security issues at casino table card games.
Abstract:
Disclosed herein is a remote control apparatus for communicating with an electric apparatus by radio communication, including: a plurality of operation keys; a transmission/reception section for transferring a signal to and from the electric apparatus by the radio communication; and a control section having at least a power control function for controlling the power of the remote control apparatus; the control section controlling the transmission/reception section to a normal power state until a predetermined period of time elapses after a signal is inputted thereto by an input of any of the operation keys to enable transfer of a signal from the electric apparatus by the transmission/reception section, the control section controlling the transmission/reception section to a low power consumption state after the predetermined period of time elapses.
Abstract:
An intermediate station transmits a supervisory signal sent form a given controlled device to a controlled device associate with the given device as a control signal. An intermediate-station input unit extracts a supervisory signal, which is a current signal superimposed on a signal transmitted through a data signal line, in every clock cycle. An intermediate-station output unit obtains the supervisory signal in every clock cycle, and outputs a control signal, which is a pulse-width-modulated voltage signal, onto the data signal line in the same clock cycle in which the supervisory signal has been extracted.
Abstract:
Various embodiments are directed to use of RF and WiFi control in a fan device to control fan status and speed and/or fan light on/off status and intensity. A customer premises includes a WiFi router through which WiFi communications can be sent from a WiFi capable device, e.g., a cell phone, to control the fan device and its various functions. While WiFi control is via a WiFi router in the home, the control signals normally do not traverse the Internet or another external network. In addition to WiFi control, control of the fan device can be via an RF control device, e.g., a wall mounted controller. In some embodiments, the fan device reports its state and/or changes in state due to received commands to a server, and the server generates a recommended normal control schedule and an away control schedule and then uses the schedules to control fan device.