Abstract:
The X-ray tube having a rotating and linearly translating anode includes an evacuated shell having a substantially cylindrical anode rotatably mounted therein. The substantially cylindrical anode may be rotated through the usage of any suitable rotational drive, and the substantially cylindrical anode is further selectively and controllably linearly translatable about the rotating longitudinal axis thereof. A cathode is further mounted within the evacuated shell for producing an electron beam that impinges on an outer surface of the substantially cylindrical anode, thus forming a focal spot thereon. X-rays are generated from the focal spot and are transmitted through an X-ray permeable window formed in the evacuated shell.
Abstract:
There is disclosed a device including: an electron beam generation device 10 which accelerates a pulse electron beam 1 to transmit the beam through a predetermined rectilinear orbit 2; a laser generation device 20 which generates a pulse laser light 3; a laser light introduction device 30 which introduces the pulse laser light 3 onto the rectilinear orbit 2 so as to collide with the pulse electron beam 1; a metal target 42 which generates a particular X-ray 5 by collision with the pulse electron beam 1: and a target moving device 40 capable of moving the metal target between a collision position 2a on the rectilinear orbit and a retreat position out of the orbit.
Abstract:
A method for manufacturing x-ray tube parts wherein metallic pieces are explosively bonded together to establish a high strength, stable union between them. The x-ray tube parts may then be milled from the bonded metallic pieces. The explosion bonding process creates only discrete intermetallic components in the joint region instead of a continuous, weakening intermetallic layer common in brazed joints. An explosion bond joint is characterized by a wavelike interface, thereby increasing surface area over which the components are bonded and further increasing bond integrity. Rotor sleeves and other tube components may be manufactured using this method.
Abstract:
An X-ray tube 1 includes spacer 8 which is cylindrical so it does not block electrons 80 directed from a grid electrode 72 toward a focusing electrode 25, and which has one end 8b fixed to the grid electrode 72 and the other end 8c abutting against the focusing electrode 25. The distance between the grid electrode 72 and focusing electrode 25 is set to a predetermined distance by the spacer 8.
Abstract:
Apparatus for connecting an HV cable to the cathode of an X-ray tube is provided with a housing disposed for attachment to the X-ray tube, and a quantity of epoxy or other electric insulating material contained within the housing. The epoxy serves to insulate the exposed end portions of the HV cable conductors, which extend beyond the cable insulation for insertion into the X-ray tube casing. The connector apparatus further includes a heat transfer device, such as a heat pipe, which extends long the cable within the connector housing. A quantity of working fluid contained in the heat transfer device is disposed for bi-directional movement along the device to transfer heat from a first location within the insulating material to a second location proximate to the housing.
Abstract:
The present invention is directed to a radiographic apparatus that utilizes a single integral housing for providing an evacuated envelope for an anode and cathode assembly. The integral housing provides sufficient radiation blocking and heat transfer characteristics such that an additional external housing is not required. The integral housing is air cooled, and thus does not utilize any coolant. In addition, the integral housing is insulated with a dielectric gel material, which electrically insulates the integral housing and its components, and also limits the amount of noise emitted from the housing during operation.
Abstract:
A linear accelerator x-ray target assembly including an electron beam which contacts an x-ray target and generates x-rays. The target is mounted such that it can rotate freely about its axis. The target has a contoured axially outer edge. Fluid flow impinging the contoured axially outer edge of the target acts to impart rotary motion on the target. The fluid flow helps to dissipate heat from the target in two ways. Firstly, heat is transferred to a cooling fluid as the cooling fluid passes over the target. Secondly, the rotation of the target helps to dissipate heat from the target by distributing the electron beam contact point around the target instead of having the electron beam impact continuously on one spot on the target.
Abstract:
The X-ray tube having a rotating and linearly translating anode includes an evacuated shell having a substantially cylindrical anode rotatably mounted therein. The substantially cylindrical anode may be rotated through the usage of any suitable rotational drive, and the substantially cylindrical anode is further selectively and controllably linearly translatable about the rotating longitudinal axis thereof. A cathode is further mounted within the evacuated shell for producing an electron beam that impinges on an outer surface of the substantially cylindrical anode, thus forming a focal spot thereon. X-rays are generated from the focal spot and are transmitted through an X-ray permeable window formed in the evacuated shell.
Abstract:
An x-ray radiator has an anode that emits x-rays, a cathode that thermionically emits electrons upon irradiation thereof by a laser beam, a voltage source for application of a high voltage between the anode and the cathode for acceleration of the emitted electrons toward the anode to form an electron beam, a vacuum housing, an insulator that is part of the vacuum housing and that separates the cathode from the anode, an arrangement for cooling components of the x-ray radiator, a deflection and arrangement that deflects the laser beam from a stationary source, that is arranged outside of the vacuum housing, to a spatially stationary laser focal spot on the cathode.