Abstract:
A method and a device for artificially generating and showing an aurora and for generating and changing a true-to-life curtain-shaped discharge light emission by using a simple device. In a pressure-reduced chamber, two electrodes are arranged in the X direction and a third electrode is arranged in the Z direction in such a manner that the two electrodes oppose the third electrode and they are apart from each other. A coil generates a magnetic line of force in the Z direction.
Abstract:
An electrode of a hot cathode fluorescent lamp includes a pair of lead wires which are inserted from the outside into a glass tube, passing through a leading end of the glass tube, ends of each of the pair of lead wires protruding outward from an outer surface and inward from an inner surface of the glass tube, respectively, shape-keeping members with leading ends welded into and fixed to leading ends of the lead wires, respectively which protrude inward from the inner surface of the glass tube, a filament coil provided with leg portions which surround the shape-keeping members and are welded into and fixed to the lead wires along with the shape-keeping members at both leading ends of a coil portion for emitting electrons, and a sleeve installed inside the glass tube and surrounding the filament coil.
Abstract:
The invention relates to a dielectric barrier discharge lamp in a coaxial double-tube arrangement, comprising an exterior electrode (6), and interior electrode (7), and an auxiliary electrode (8). The interior electrode (7) is designed as an electrically conductive layer placed inside the interior tube (3) of the double-tube arrangement. The auxiliary electrode (8) is designed, for example, as a metal tube or pipe and is also disposed inside the interior tube (3), specifically in direct contact with the layer. In this manner, the conductivity of the interior electrode (S) is improved.
Abstract:
The cold cathode lamp includes a light-transmissive insulating tube; the first and second internal electrodes disposed inside the insulating tube; the first and second external electrodes disposed outside the insulating tube and connected to the first and second internal electrodes, respectively; the first and second insulating members covering the first and second external electrodes, respectively; the first opposite electrode opposite the first external electrode with the first insulating member interposed therebetween, the second opposite electrode opposite the second external electrode with the second insulating member interposed therebetween, the first insulating layer covering the outer edges of the first opposite electrode; and the second insulating layer covering the outer edges of the second opposite electrode. It is possible to light up a plurality of cold cathode lamps that are connected in parallel to a power supply. It is also possible to suppress the generation of a corona discharge around the outer edges of the opposite electrode.
Abstract:
A cold cathode lamp includes a light-transmitting insulating tube, first and second internal electrodes arranged inside the insulating tube, first and second external electrodes arranged outside the insulating tube and respectively connected with the first and second internal electrodes, first and second insulating bodies respectively covering the first and second external electrodes, a first counter electrode arranged opposite to the first external electrode via the first insulating body, and a second counter electrode arranged opposite to the second external electrode via the second insulating body. The first (second) counter electrode has a portion which does not face the first (second) external electrode, and the space between this portion and the insulating tube is filled with the first (second) insulating body. A plurality of such cold cathode lamps can be lit by being connected in parallel with a power supply. In addition, generation of corona discharge near the outer peripheries of the counter electrodes can be suppressed.
Abstract:
A light emitting lamp, a backlight assembly and a display device including the same are provided. The light emitting lamp includes a lamp tube longitudinally extended along an extension line, and a plurality of set electrodes disposed on a periphery of the lamp tube and along the extension line. The periphery of the lamp tube is divided into a first region and a second region by a plane including the extension line, and each of the set electrodes includes a first electrode disposed on the first region and a second electrode disposed on the second region.
Abstract:
It is possible to enhance the luminance of a cold-cathode type discharge lamp and to contribute to a prolongation of service life thereof. A discharge lamp 1 is provided with an electrode 3 having a cup 4 with such a shape that a bottom is provided at each of both opposed ends of the glass tube 2. The cup 4 is connected to a lead-in wire 8 which is inserted through the end of the glass tube 2 and held thereby. The collision-preventing ring 5 covering an end surface of the cup 4 is provided to the open end 4a of the cup 4. The porous tungsten disk 6 impregnated with a ternary metal oxide composed of barium (Ba), aluminum (Al), and calcium (Ca) as an electron emission material is provided at a bottom in an inside of the cup 4.
Abstract:
Methods and apparatus are provided for increasing the life of a fluorescent lamp suitable for use as a backlight in an avionics or other liquid crystal display (LCD). The apparatus includes a channel configured confine a vaporous material that produces an ultra-violet light when electrically excited. A layer of light-emitting material is disposed within at least a portion of the channel is responsive to the ultra-violet light to produce the visible light emitted from the lamp. An electrode assembly that electrically excites the vaporous material includes a first post, a second post, a conductive filament suspended between the first post and the second post and having a tail portion extending therebeyond, and a benign insulating material such as glass frit substantially covering the tail portion to prevent radio frequency (RF) emissions from the tail portion of the filament.
Abstract:
A fluorescent lamp including a glass bulb that is in a shape of a tube. External electrodes are formed as conductive layers each of which covers an outer surface of the glass bulb at an end thereof. Metal members in a shape of a cap are respectively connected to the external electrodes by covering at least part of the external electrodes. The metal members are formed such that rims of the metal members recede from a center of the glass bulb in the tube axis direction a distance L than rims of the external electrodes.
Abstract:
The disclosed subject matter includes a filament electrode that can include a filament coil connected with a pair of lead wires with confidence. It is possible for a fluorescent lamp using the filament electrode to emit light with a wider range while located in a thin tube. The filament electrode can include a pair of connecting pipes, a pair of lead wires located parallel to each other, and a filament coil including two connecting parts. Each of the two connecting parts of the filament coil can attach to respective ends of the pair of lead wires via the pair of connecting pipes via pressure bonding so as not to contact the connecting parts of the filament coil with the ends of the pair of lead wires located in the pair of connecting pipes and so as to align the structures. Thus, the filament electrode can be used even in a thin glass or quartz tube and can provide an effective heat-shield operation.