Abstract:
A method for manufacturing a laminated core for a motor comprises the steps of: stamping a sheet of a core of a straight form to have a form that a plurality of split cores are connected; laminating sheets of the core perpendicularly; bending the sheets of the core in a round form; and forming a connection caulking part at contact parts of yokes, which are adjacent to each other, of the bended core.
Abstract:
A laminated iron core includes a plurality of iron core pieces laminated each other, each iron core piece having a thickness of 0.2 mm or less. Each of the plurality of iron core pieces includes a flat part, openings and a pair of caulking protrusions opposed and separated from each other in plan view, each caulking protrusion having one end continuing with the flat part and the other portion being separated from the flat part to be inclined in a lamination direction of the iron core pieces. The pair of caulking protrusions of each iron core piece are fitted into the openings formed in an adjacent one of the plurality of iron core pieces in the lamination direction to join the plurality of iron core pieces, and the other ends of the pair of caulking protrusions face toward each other or face in opposite directions.
Abstract:
A production method for the laminated iron core includes a first process that segment iron core pieces which respectively have circular arc angles obtained by dividing 360° as an angle of circumference into m are separated from a belt shaped iron core material and mounted on a mount base, the segment iron core pieces are carried to a laminating position of a rotary laminating mechanism by a pusher and the rotary laminating mechanism including the carried segment iron core piece therein is rotated by 360°/m and a second process that the first process is repeated to form an annularly connected iron core piece in which the segment iron core pieces are annularly arranged. The second process is repeated to form a caulked and laminated iron core having a prescribed thickness. During the second process, the segment iron core pieces are caulked and laminated in the rotary laminating mechanism.
Abstract:
A stator core comprises a circumferentially deformable part formed on a radially outer peripheral side of a yoke; circumferentially facing divided parts formed on a radially inner peripheral side of the yoke, each having a dividing line that is oriented in a radial direction and reaches a portion between teeth and divided surfaces that face each other without a gap; and radially facing divided parts formed at the center between the radially inner and outer sides of the yoke along the circumferential direction at the predetermined interval, and each having divided surfaces that face each other in the radial direction, and being continuous at one ends with the respective circumferentially facing divided parts. The circumferentially facing divided parts each have a compressive stress being smaller than a compressive stress acting on the circumferentially deformable part or being zero.
Abstract:
A core of a rotating electrical machine is formed by laminating core plates, which are each formed by a plurality of core pieces. According to the method for manufacturing the core, a belt-like workpiece is first conveyed intermittently in its longitudinal direction. Then, while the workpiece is in a stopped state, side edges of a core piece are punched out. At a downstream position in the conveying direction of the workpiece, the remaining edges of the core piece are cut, so that the core piece is punched out. The punched out core pieces are lined up on a support. The core plate is thus formed, and the core pieces are laminated.
Abstract:
A stator core for a rotating electric machine includes a plurality of split cores. Each of the plurality of split cores includes a back yoke, a tooth, and a single caulking portion. When each of the plurality of split cores is seen in an axial direction, two inner circumferential-side intersections and two outer circumferential-side intersections are defined, both circumferential-end surfaces of the tooth intersect an inner circumferential surface of the back yoke at the two inner circumferential-side intersections, virtual lines drawn by extending both the circumferential-end surfaces of the tooth intersect an outer circumferential surface of the back yoke at the two outer circumferential-side intersections, a central position of the caulking portion is disposed in an opposing angular region on a radially outer side out of four opposing angular regions defined by lines diagonally connecting the two inner circumferential-side intersections to the respective two outer circumferential-side intersections.
Abstract:
The method for manufacturing a stator core includes: a punching step in which magnetic segments are punched out of an electromagnetic steel sheet that is coated with an organic insulating coating; a laminating step in which a laminated body is formed by laminating a predetermined number of the punched magnetic segments; a first preheating step in which a welding position on a wall surface of the laminated body is heated locally from a first end to a second end in a direction of lamination to decompose an organic component in the insulating coating thermally at the welding position; and a first welding step in which the welding position at which the organic component in the insulating coating is decomposed thermally is welded from the first end to the second end in the direction of lamination to interconnect and integrate the laminated magnetic segments.
Abstract:
A method of resin-sealing for a laminated core includes the steps of: holding by sandwiching a core body 11 between a resin injection mold 20 and a supporting mold 21; extruding a molten resin using a plunger 37 from a resin reservoir pot 24 provided in the resin injection mold 20; and resin-sealing the permanent magnets 18 in the magnet insertion holes 16 and 17, wherein a material of the resin reservoir pot 24 of the resin injection mold 20 and a region through which the resin passes from the resin reservoir pot 24 is a superhard material, and wear in the resin injection mold 20 due to a flow of the resin is reduced. With this, a gap between the resin reservoir pot 24 and the resin injection mold 20 due to a difference in thermal expansion is less easily produced.
Abstract:
A split core of the invention is formed from a plurality of magnetic steel sheets that are stacked in a thickness direction and joined together by crimping, and that when provided in plurality, forms a stator core by being arranged in a circle. This split core includes a yoke that extends in a circumferential direction; a tooth that extends radially inward from an inner peripheral side end portion of the yoke; and an abutting portion that is formed on a joining surface of the yoke that joins with a yoke of another adjacent split core. A radial crimping portion that is longer in a radial direction and is positioned to an outer peripheral side of a maximum outer radius of the abutting portion, and that is crimped to a crimping portion of another magnetic steel sheet, is provided on each of the magnetic steel sheets.
Abstract:
The method for manufacturing a stator core includes: a punching step in which magnetic segments are punched out of an electromagnetic steel sheet that is coated with an organic insulating coating; a laminating step in which a laminated body is formed by laminating a predetermined number of the punched magnetic segments; a first preheating step in which a welding position on a wall surface of the laminated body is heated locally from a first end to a second end in a direction of lamination to decompose an organic component in the insulating coating thermally at the welding position; and a first welding step in which the welding position at which the organic component in the insulating coating is decomposed thermally is welded from the first end to the second end in the direction of lamination to interconnect and integrate the laminated magnetic segments.