Abstract:
A programmable decoder includes at least one programming input for a plurality of programmable, reduced state trellis parameters. A programmable device is connected to the at least one programming input and implements a Reduced-State Sequence Estimation (RSSE) decoder comprising at least one reduced-state trellis structure based upon the plurality of programmable reduced-state trellis parameters, including one of at least the number of super-states, the number of full-states, the number of branches per super-state, a reverse super-state trellis table, a decoder super-state survivor as a full-state, a forward full-state table, a full-state to super-state mapping table, a decoder super-state path metric and decoder super-state traceback array.
Abstract:
A differential radio frequency signal transmitter is provided. The differential radio frequency signal transmitter includes an oscillator, a modulator and an amplifier module. The oscillator generates a pair of differential oscillation signals. The modulator generates a pair of differential modulated signals according to an input signal and the pair of differential oscillation signals. The input signal is a digital signal. When the input signal is at a first state, the modulator outputs the pair of differential oscillation signals as the pair of differential modulated signals, and when the input signal is at a second state, the modulator outputs a constant voltage signal as the pair of differential modulated signals. The amplifier module receives and amplifies the pair of differential modulated signals and generates a pair of differential radio frequency signals, accordingly.
Abstract:
A system and method of the present invention forms a hybrid encoded signal. A signal generator generates a coded waveform having a trellis structure, such as a continuous phase modulated signal. A modulator is operative with the signal generator and adds at least one orthogonal or amplitude modulated waveform to a trellis structure of the coded waveform to create a non-constant envelope modulated signal that has at least one of increased bandwidth, improved bit error rate, or an increased number of bits encoded into a single symbol.
Abstract:
A radio network node comprised, and a wireless device configured to be operative, in a wireless communication system. The radio network node obtains downlink data and converts it to a baseband signal. The conversion comprises Gaussian Minimum Shift Keying (GMSK) modulation of the downlink data. The modulation applies a negative modulation index selected based on a type of wireless device that is a target for the downlink data. A radio signal is provided based on the baseband signal and sent to, and received by, the wireless device that provides user data based on the radio signal.
Abstract:
A transceiver arrangement is disclosed. The transceiver arrangement comprises a receiver arranged for frequency-division duplex communication with a communication network and a transmitter arranged for frequency-division duplex communication with the communication network. The transceiver arrangement also comprises a transmission port anda phase shifter arrangement which comprises a first 180° phase shifter and a second 180° phase shifter. The transceiver arrangement further comprises a filtering arrangement. The filtering arrangement comprises filters of a first type and filters of a second type. The filtering arrangement and the phase shifter arrangement are arranged to connect the receiver, transmitter and transmission port forming a first signal path between the transmission port and the transmitter by a first one of the filters of the first type and the first phase shifter in series, a second signal path between the transmission port and the transmitter by a second one of the filters of the first type and a first one of the filters of the second type in series, a third signal path between the transmission port and the receiver by a second one of the filters of the second type and the second phase shifter in series, and a fourth signal path between the transmission port and the receiver by a third one of the filters of the second type and a third one of the filters of the first type in series. The filters of the first type are arranged to pass signals at transmitter frequency and attenuate signals at receiver frequency, and the filters of the second type are arranged to attenuate signals at transmitter frequency and pass signals at receiver frequency. A communication device capable of frequency division duplex communication comprising such a transceiver arrangement is also disclosed.
Abstract:
A device for detecting an estimated value for a symbol at a given time, which is supplied to a phase modulation and transmitted via a transmission channel with a time-variable phase, provides a unit for determining log weighting factors in a forward recursion, a unit for determining complex coefficients in a forward recursion, a unit for determining log weighting factors in a backward recursion, a unit for determining complex coefficients in a backward recursion, a unit for determining an extrinsic information, a unit for determining the phase factor with the maximal weighting factor in a forward recursion and a unit for determining the phase factor with the maximal weighting factor in a backward recursion.
Abstract:
To reflect advantages of a constant phase modulation waveform, the invention provides a pulse amplitude modulated PAM waveform that is a superposition of Q0≦2L−1 PAM component pulses in each symbol interval such that a significant portion of signal energy over each symbol interval is within the Q0 PAM component pulses. The present invention distributes most signal energy in one pulse and progressively lower energies in the remaining Q0−1 pulses of a symbol interval. The Laurent Decomposition is a special case of the present invention, but the present invention exhibits the energy distribution of the Laurent Decomposition in non-binary CPM waveforms and in multi-h (binary and non-binary) CPM waveforms, where h is a modulating index. All energy is distributed among only Q=2L−1 pulses in each symbol interval, though only Q0
Abstract:
A programmable decoder includes at least one programming input for a plurality of programmable, reduced state trellis parameters. A programmable device is connected to the at least one programming input and implements a Reduced-State Sequence Estimation (RSSE) decoder comprising at least one reduced-state trellis structure based upon the plurality of programmable reduced-state trellis parameters, including one of at least the number of super-states, the number of full-states, the number of branches per super-state, a reverse super-state trellis table, a decoder super-state survivor as a full-state, a forward full-state table, a full-state to super-state mapping table, a decoder super-state path metric and decoder super-state traceback array.
Abstract:
A system and method of the present invention forms a hybrid encoded signal. A signal generator generates a coded waveform having a trellis structure, such as a continuous phase modulated signal. A modulator is operative with the signal generator and adds at least one orthogonal or amplitude modulated waveform to a trellis structure of the coded waveform to create a non-constant envelope modulated signal that has at least one of increased bandwidth, improved bit error rate, or an increased number of bits encoded into a single symbol.
Abstract:
A transceiver uses feedback control to monitor a transmitted continuous phase modulation (CPM) waveform, such as a spread spectrum CPM waveform, and adjust the modulation index in response thereto. Codewords are selected from a table according to a data signal and applied to a pulse shaping network. The pulse shaping network outputs a CPM waveform to a prefilter. The prefilter is connected to an FM modulator, such as a voltage controlled oscillator. In one embodiment, a correlator in the transceiver monitors the transmitted waveform during times when the transceiver is not receiving signals, and provides a correlation signal to a feedback control circuit. The feedback control circuit dynamically adjusts the gain of the prefilter, and may comprise, e.g., a second order tracking loop filter. The feedback control signal thereby tracks the amplitude of the transmitted waveform and adjusts the output gain of the prefilter so as to maintain a constant signal envelope. A tau-dither algorithm may be employed as part of the tracking circuit. In an alternative embodiment, a gradient search is used to adjust the output amplitude of the transmitted signal, wherein the step size of the gradient search is based on the slope of the signal amplitude and varied dynamically over time. In another embodiment, a two bandwidth differencing circuit is used to adjust the output amplitude of the transmitted signal.