Abstract:
The present invention is a flatbed scanner operating with a digital image capture module comprising two-dimensional (2D) optical image photo-sensor and in particular with a digital camera or digital video camera. The present invention further relates to flatbed scanners and means and methods of supporting cameras, and particularly, although not exclusively, to a flatbed scanner housing for holding a digital camera to allow the digital camera to act as a document capture device in obtaining digital images suitable for downloading to a personal computer or other computer peripherals such as a printer. The scanner incorporates an image capturing module comprising 2D image photosensor and assembly such as flash light, electronic circuit, and software inside the flatbed scanner box to function like an image capturing module where said scanner box functions like the camera body with an internal lens internal.
Abstract:
A multifunction printer having a compact size and portable configuration while providing printing, scanning and copying functionalities is disclosed. The multi-function printer may include a paper handling assembly and a floating scanner assembly pivotably coupled to the paper handling assembly. The multi-function printer may further include a printer assembly coupled to the paper handling assembly. The floating scanner assembly is coupled to and aligned with a pick roller portion of the paper handling assembly and configured to scan and/or otherwise operate on a media supported within a document feeder. Thus, the multi-function printer may provide a wide variety of functionalities while maintaining a desirable compact configuration and portability.
Abstract:
A contact-type image sensor having an adhesive elastic layer therein includes a protective member including a light transmitting area. An illumination device is provided for illuminating an original, bearing image information thereon, through the protective member. A photosensor device is provided for reading the image information, and imaging structure is provided for focusing light reflected from the original onto the photosensor device. Support structure is provided for integrally supporting the illumination device, the photosensor device, and the imaging structure. An elastic adhesive layer is provided on a contact surface between the protective member and the support structure. The elastic adhesive layer joins the protective member and the support structure.
Abstract:
The improved transporting apparatus for scanning exposure of a recording material as it is fixed on an exposure mount which is moved by means of a screw transmission mechanism is characterized in that the exposure mount for transporting the recording material is composed of a platen for carrying the recording material and a transport plate that holds the platen and which engages the screw transmission mechanism, with the platen and the transport plate being designed to be capable of relative displacement by small amounts, preferably in a non-contact relationship. Optionally, urging members may be provided to combine with the platen and the transport plate to form a vibration system that composes a vibration filter. The apparatus effectively absorbs not only vibrations that originate from the drive system to be transmitted to the exposure mount via the travelling nut of the screw transmission mechanism, as exemplified by erratic rotation or vibrations of the motor and the screw shaft of the screw transmission mechanism, but also vibrations due to externally applied forces and, hence, highly precise scanned transport of the recording material can be accomplished while suffering from very small levels of unevenness in the speed of its transport that will occur on account of those unwanted vibrations.
Abstract:
In one of aspects of the invention, an automatic sheet conveying mechanism comprises upper and lower casings mutually coupling sheet conveying paths in a releasable state, and a sheet guide plate for partitioning the sheet conveying paths together with the lower casing, guiding the lower surface of the sheet being conveyed, and defining the projecting extent of the functional parts supported by the lower casing into the sheet conveying path, in which the sheet guide plate is formed integrally with the lower casing.
Abstract:
An image-reading device comprises a lens unit array comprising an array of distributed refractive index plastic cylindrical lens elements and plastic plates, adhering the distributed refractive index plastic cylindrical lens elements therebetween, and a plastic case containing and holding the lens unit array. The difference in the thermal expansion coefficients of the plates of the lens unit array and the plastic case is 5.0.times.10.sup.-5 cm/cm/.degree. C. or below, or more preferably, 3.0.times.10.sup.-5 cm/cm/.degree. C. or below. The plastic case is formed by connecting, in a longitudinal arrangement, a plurality of case segments formed by an injection molding.
Abstract translation:图像读取装置包括透镜单元阵列,该透镜单元阵列包括分布折射率的塑料柱面透镜元件和塑料板的阵列,将分布的折射率塑料柱面透镜元件粘附在其间,以及容纳和保持透镜单元阵列的塑料壳体。 透镜单元阵列和塑料壳体的板的热膨胀系数的差为5.0×10 -5 cm / cm /℃以下,更优选为3.0×10 -5 cm / cm /℃,或 下面。 塑料外壳是通过纵向配置连接多个通过注模成型形成的外壳段形成的。
Abstract:
There is disclosed an image ssensor unit comprising: illumination unit for illuminating light on an original; an image sensor for reading out image information on the original by reflection light of said illuminated light; holding for holding the illumination unit; and a mounting unit for causing the holding unit to hold the illumination unit so that the relative displacement between the illumination unit and said holding unit in a direction along a surface of the holding unit on which the illumination unit is held by the holding unit.
Abstract:
An image reading apparatus includes: a contact glass provided at an upper surface of a main body of the apparatus to set a manuscript thereon, an image sensor being positioned below the contact glass and having a reading surface on contact glass side for reading an image from the manuscript on the contact glass, a carriage supporting the image sensor accommodated in a sensor container formed to have a recess open to the contact glass side, a rail member slidably supporting the carriage, and a biasing member biasing the image sensor to the contact glass side via a biased portion adjacent to the reading surface of the image sensor. An upper end of the biasing member is positioned below the contact glass and above the lower surface of the image sensor.
Abstract:
An image reading apparatus includes: a contact glass setting a manuscript thereon; an image sensor extending in a first direction and having a reading surface which faces the contact glass for reading an image from the manuscript on the contact glass; a rail member extending inside the apparatus main body in a second direction perpendicular to the first direction; a carriage having a sensor container to contain the image sensor, a taper end portion formed in an end portion in the first direction to become smaller in height toward the end side, and an opening formed in the bottom of the sensor container on the taper end portion side; a biased portion adjacent to the reading surface of the image sensor in the second direction; and a biasing member biasing the image sensor toward the contact glass via the biased portion.
Abstract:
A movable carriage includes a mechanism configured to hold a sensor unit so as to allow the sensor unit to displace with respect to the carriage. The mechanism allows the sensor unit to displace with respect to the carriage in a rotational direction centering on a shaft parallel to a moving direction of the carriage and disposed above a reading area of the sensor unit, and in a vertical direction.