Abstract:
The present invention provides a DBD cell (500) including ring shaped electrodes (512 and 514) that are positioned side-by-side on a dielectric tube (516). An AC power supply (518) is provided such that the cell and the power supply form a DBD treatment device (540) for abatement of noxious gases for example FCs that can be discharged from semiconductor fabricating devices. Additionally, one or more sensors (822) and/or one or more gas addition ports (816) can be included in a DBD cell (800) of the present invention. Several DBD cells (1030, 1036 and 1042) of the present invention can be combined to form a DBD reactor (1010) of the present invention. AC power supplies (1012, 1014 and 1016) are utilized to energize the cells (1030, 1036 and 1042).
Abstract:
An apparatus for generating ozone and anion capable of respectively controlling an ozone generator and an anion generator is disclosed. The apparatus includes an ozone generator, an ozone generator-driving portion, a second power source supplying power to the ozone generator-driving portion, an anion generator, an anion generator-driving portion, a circulating fan circulating the generated anion, a first power source supplying power to the anion generator-driving portion, a selecting valve selectively discharging the anion generated from the anion generator to a water purifier 100 or an ozone container, an activated carbon filter removing smell of the ozone introduce through the selecting valve into the water purifier, a controlling portion controlling the anion generator-driving portion and the ozone generator-driving portion, an operating portion inputting an external instruction to the controlling portion, and a timer controlling a reserving function of the operating portion.
Abstract:
A reactor for the plasma-assisted processing of gaseous media comprising a reactor chamber including a gas permeable bed of active material, a power source for applying across the bed of active material a potential sufficient to establish a plasma in a gaseous medium flowing through the bed of active material and a chamber having an inlet stub and an outlet stub for constraining the gaseous medium to flow through the bed of active material, wherein the bed of active material comprises a matrix of beads of a dielectric material having an assembly of regular arrays of beads in each of which adjacent beads are connected to a high voltage input terminal or an electrical ground.
Abstract:
A method and an apparatus for purifying a gas containing contaminants are disclosed. The gas is irradiated with an ultraviolet ray and/or a radiation ray so as to produce microparticles of the contaminants. The resultant microparticles of the contaminants are contacted with a photocatalyst. Then, the photocatalyst is irradiated with light so as to decompose the contaminants held in contact with the photocatalyst. Organic compounds, organosilicon compounds, basic gas and the like can be decomposed by the action of the photocatalyst. Even when these species are present at a low concentration, they can be concentrated locally by transforming into microparticles, and hence can be removed.
Abstract:
A compact capacitively coupled electrode structure for use in a gas plasma reactor/generator is disclosed. The electrode structure comprises a parallel plate type anode and cathode spaced to define a gas flow path or volume therebetween. A plurality of electrically conductive fin elements are interposed in the space between the anode and cathode. The fin elements substantially increase the ratio of electrode surface area to volume, and subdivide the gas flow path or volume, thereby substantially increasing the efficiency of plasma gas processing that is possible over a broad range of operating parameters, without substantially increasing the spacing between the anode and cathode. Static or closed operation is also disclosed. Also disclosed is a multi-anode/multi-cathode electrode assembly embodying the basic electrode structure and a highly efficient and compact gas plasma reactor/generator employing the assembly.
Abstract:
A method of forming thin porous layers of calcium phosphate upon a silicon wafer surface using a high voltage spark. The outer layer of calcium phosphate is the inorganic component of bone and is anchored to the underlying substrate of silicon. The silicon is compatible with existing integrated circuit processing methods. The morphology and thickness of the calcium phosphate film can be controlled by the duration of the spark and the distance between the affected surface and the counterelectrode utilized. The resultant porous layer can be impregnated with medicinally useful substances which then can be subsequently released to the surroundings through an electrical actuator.
Abstract:
An apparatus for generating an electromagnetic field in water. The apparatus comprises a set of spaced electrically conductive rings, which are respectively positively charged (rings 2, 6) and negatively charged (rings 3, 5). The rings are on a common axis between a negative plate (1) and a positive plate (7) and have precise spacings and dimensions. A central neutral ring (4) separates the pairs of rings. The electromagnetic field generated is such as to produce increases in the organic electrolytic functionality of living cellular material which is contacted with the water.
Abstract:
The invention relates to an apparatus for the irradiation, in particular UV irradiation, of a liquid. The irradiation takes place in this case under precisely defined and reproducible operating conditions. The apparatus has a rotating cylinder with an upper inflow, a lower outflow and an irradiation unit, the cylinder forming an angle of inclination (&agr;) with the horizontal. The lower outflow also has two connections for passing on the liquid, one connection being closable with the aid of a first control unit if the irradiation of the liquid deviates from the defined conditions.
Abstract:
An ozone storage/recovery method comprises a process for supplying an ozone-containing gas, generated by an ozone generator, to an ozone adsorbent tank filled with an ozone adsorbent contained at least one high-silica material selected from the group consisting of a high-silica pentasil zeolite, a dealumination faujasite and a mesoporous silicate, causing the adsorbent to adsorb ozone at a temperature of 0° C. or below, and storing the ozone, and a process for desorbing the ozone adsorbed by the adsorbent in the ozone adsorbent tank and recovering the ozone from the adsorbent tank, whereby ozone can be supplied as required.
Abstract:
One of the electrodes is covered an insulated material outer skin and is formed with a long wire shape, a band shape or a plate shape. Another of the electrodes is formed with a bare wire by suiting the various shapes and is formed along another insulated core wire and is arranged closely contact with a parallel shape, a right angle shape, a spiral shape, a net shape or a zigzag shape. Accordingly it is possible to lower the voltage. The both electrodes are separated electrically and mechanically using an insulated material and in an ozone generation portion the both electrodes are separated completely.