Abstract:
A polymerization catalyst comprising (1) a catalyst having a compound of the Formula (I): (2) a further catalyst for the polymerization of 1-olefins which is different from catalyst (1).
Abstract:
The present invention relates to transition metal compounds and to polymerization catalyst systems employing said transition metal compounds.
Abstract:
A catalyst system comprises an organometallic complex of a group 4 metal having a ketimide ligand. The organometallic complex preferably also contains a cyclic ligand which forms a delocalized pi-bond with the metal (such as a cyclopentadienyltype ligand). Preferred organometallic complexes may be activated with a so-called “substantially non coordinating anion” to form a low cost cocatalyst system which is excellent for the preparation of olefin copolymers having both high molecular weight and very low density.
Abstract:
Catalyst systems useful for olefin polymerization are disclosed. The catalyst systems include an activator and an organometallic complex. The complex, which incorporates at least one Group 3-10 transition or lanthanide metal, is uniquely prepared from an indenoindolyl dianion or its synthetic equivalent. A diverse array of monomeric, dimeric, polymeric, or zwitterionic complexes are available from the dianion or its equivalent.
Abstract:
This invention is directed to novel Group 8-10 transition metal catalysts and to batch or continuous polymerizations using these catalysts. The catalysts of the present invention readily convert ethylene and &agr;-olefins to high molecular weight polymers, and allow for olefin polymerizations under various conditions, including ambient temperature and pressure, and in solution. Preferred catalysts are group 8-10 transition metals having certain dipyridyl ligands bonded thereto.
Abstract:
Novel compounds are disclosed comprising the skeletal unit depicted in Formula (I) wherein O is oxygen; N is nitrogen; R1 is hydrogen, hydrocarbyl, substituted hydrocarbyl, heterohydrocarbyl or substituted heterohydrocarbyl; R3, R4, R5 and R6 are hydrogen or hydrocarbyl or heterohydrocarbyl groups containing 1 to 10 carbon atoms and the R12 groups are independently selected from hydrogen, hydrocarbyl, substituted hydrocarbyl, heterocarbyl and substituted heterocarbyl; A is carbon or silicon; and r is 1 or more; M is scandium, yttrium, or a Group IV or Group V metal or a lanthanide or actinide; T is the oxidation state of M and is II or greater; X represents a monodentate atom or group covalently or ionically bonded to M; L is a mono- or bidentate molecule datively bound to M, and n is from 0 to 5.
Abstract translation:公开了包含式(I)中所示的骨架单元的新型化合物,其中O是氧; N是氮; R 1是氢,烃基,取代的烃基,杂烃基或取代的杂烃基; R 3,R 4,R 5和R 6是氢或含有1至10个碳原子的烃基或杂烃基,R 12基团独立地选自氢,烃基,取代的烃基,杂碳原子和取代的杂碳原子; A是碳或硅; r为1以上; M是钪,钇或IV族或Ⅴ族金属或镧系元素或锕系元素; T为M的氧化态,为II以上; X表示与M共价或离子键合的单齿原子或基团; L是与M直接结合的单齿或双齿分子,n为0至5。
Abstract:
A coordination catalyst system comprising at least one metallocene or constrained geometry pre-catalyst transition metal compound, (e.g., rac-ethylene bis(indenyl)zirconium dichloride), at least one non-metallocene, non-constrained geometry, bidentate transition metal compound or tridentate transition metal compound (e.g., tridentate 2,6-diacetylpyridine-bis(2,4,6-trimethylanaline)FeCl2), at least one support-activator (e.g., spray dried silica/clay agglomerate), and optionally at least one organometallic compound (e.g., triisobutyl aluminum), in controlled amounts, and methods for preparing the same. The resulting dual transition metal catalyst system is suitable for addition polymerization of ethylenically and acetylenically unsaturated monomers into polymers; for example, polymers having a broad molecular weight distribution, Mw/Mn, and good polymer morphology.
Abstract:
This invention relates to an olefin polymerization catalyst composition comprising the product of the combination of at least one activator and at least two different transition metal compounds each of which is represented by the formula: ((Z)XAt(YJ))qMQn (I) where M is a metal selected from Group 3 to 13 or lanthanide and actinide series of the Periodic Table of Elements; Q is bonded to M and each Q is a monovalent, divalent or trivalent anion; X and Y are bonded to M; X and Y are independently C or a heteroatom, provided that at least one of X and Y is a heteroatom and Y is contained in a heterocyclic ring J, where J comprises from 2 to 50 non-hydrogen atoms; Z is bonded to X, where Z comprises 1 to 50 non-hydrogen atoms; t is 0 or 1; when t is 1, A is a bridging group joined to at least one of X, Y or J; q is 1 or 2; n is the oxidation state of M minus q if Q is a monovalent anion, n is (the oxidation state of M−q)/2, if Q is a bivalent anion or n is (the oxidation state of M−q)/3 if Q is a trivalent anion.
Abstract:
The invention provides a novel metal complex which, when used with an activating cocatalyst, provides a novel catalyst composition. The invention also provides a polymerization method which utilizes the catalyst composition to produce polymers and copolymers containing polar monomer groups. More specifically, the invention comprises a composition comprising the formula LMXZn wherein X is selected from the group consisting of halides, hydride, triflate, acetates, borates, C1 through C12 alkyl, C1 through C12 alkoxy, C3 through C12 cycloalkyl, C3 through C12 cycloalkoxy, aryl, thiolates, carbon monoxide, cyanate, olefins, and any other moiety into which a monomer can insert. M is selected from the group consisting of Cu, Ag, and Au. L is a nitrogen-containing bidentate ligand having more than two nitrogen atoms. Z is a neutral coordinating ligand and n equals 0, 1, or 2.
Abstract:
The present invention relates to transition metal complex compounds, to polymerization catalysts based thereon and to their use in the polymerization and copolymerization of olefins.