Abstract:
A device for texturizing strand material into a wool-type product includes outer and inner nozzle sections. The outer and inner nozzle sections interface and define a passage through which the strand material travels. A locking device in the inner nozzle section is operable to selectively stop movement of the strand material. The locking device includes a seal holder that positions a sealing member within the inner nozzle section to prevent debris from entering the inner nozzle section, thereby promoting continued effective operation of the locking device. The outer nozzle section includes an end nozzle assembly including a hardened outlet tube. The hardened outlet tube is distinct from the outer nozzle section and, thus, can be repaired or replaced independently of the outer nozzle section.
Abstract:
A spunbond nonwoven from thermoplastic filaments is made by spinning the filaments from at least one spinner, cooling and stretching the spun filaments, depositing the cooled and stretched filaments on a surface to form a nonwoven fleece web, and moving the fleece web in a travel direction. A liquid medium is introduced into the moving fleece web and it is then mechanically needled. The mechanically needled web is then subject to a hydraulic or hydrodynamic final consolidation by hydroentanglement to a basis weight of more than 80 g/m2 from a top side as well as from a lower side of the nonwoven fleece web by high-pressure water-jet bars above and below the nonwoven fleece web. O of the bars is upstream of the other bar and has a hpi density that is smaller than that of the other bar and that is equal to at most 40.
Abstract:
A device treats a thread with compressed air. To this end, the device has an intermingling device which is encapsulated in a housing with respect to the environment. For thread guidance, the housing has a thread inlet and an opposite thread outlet. In order to prevent direct transmission of noise through the thread inlet and the thread outlet, the thread inlet and/or the thread outlet is formed in each case by two separate opening slots in quick succession and a thread guiding member between the opening slots.
Abstract:
A device for producing interlaced knots in a multifilament thread is described. The device includes a rotating nozzle ring having a circumferential guide groove and a plurality of nozzle bores opening radially into the base of the guide groove. A stationary pressure chamber, having a chamber opening and an air connection, is associated with the nozzle ring, wherein by rotation of the nozzle ring the nozzle bores can be connected in turn to the chamber opening of the pressure chamber. To permit an intensive air treatment of the thread, the dimension of the chamber opening in the pressure chamber and the spacing of adjacent nozzle bores on the nozzle ring are designed such that as the nozzle ring rotates a plurality of nozzle bores are simultaneously connected to the chamber opening.
Abstract:
An apparatus for producing entanglements on a multifilament thread, has a treatment channel, has a nozzle bore that opens into the treatment channel and has an air supply device. The air supply device interacts with the nozzle bore in order to produce pulse-like compressed-air flows, wherein the compressed air is produced via a pressure chamber and a pressure source. In order in particular to control the pressure pulses produced in the pressure chamber, a volume store is arranged between the pressure chamber and the pressure source, wherein the volume store has a storage volume which is greater than a chamber volume of the pressure chamber.
Abstract:
Techniques are directed to godet unit for guiding a multifilament thread, including a driven godet of an auxiliary roller or a second godet, from which the thread can be guided with multiple loopings, and including a mingling device for air-mingling the thread. The godet and the mingling device are provided in the form of a combined assembly.
Abstract:
The texturing and interlacing machine for processing synthetic yarns comprises: at least one supporting and unwinding member for at least one bobbin (B1) of untreated yarn to be textured; at least one supporting and unwinding member (31) for a bobbin (B3 ) of elastomer; a feed path, for at least one yarn (F1) to be textured; along the feed path for the yarn to be textured, in sequence along the direction of feed of the yarn to be textured: a stretching roller (5), a first oven (7 ), a cooling area (9), a yarn twisting unit (11), a master roller (13), a second oven (15), a stabilizing roller (21), an interlacing device (23) and an overfeed roller (25).
Abstract:
A novel process is provided for making spin-drawn yarn from poly(trimethylene terephthalate). The yarn, when packaged on a cheese-shaped spindle, can be produced in large sizes without crushing.
Abstract:
A device for air interlacing (10) of a yarn (Y), comprising an interlacing chamber (24), a first entrance channel (22) for receiving the yarn (Y) at the device (10) entrance and feeding it to the interlacing chamber (24), and a second exit channel (23) for receiving the yarn from the interlacing chamber (24) and releasing it at the device exit, in which the interlacing chamber (24) is delimited by a first emitting wall (24a) bearing a nozzle (26) for the emission of a continuous jet of compressed air (31), and a second deflecting wall (24b), opposite the first wall (24a), suitable for receiving and deflecting the jet of compressed air (31) emitted by the nozzle (26) and intersecting the yarn to be interlaced, and in which the second deflecting wall (24b) is concave in shape both on a transversal plane and on a longitudinal plane with respect to the feeding path (11) of the yarn (Y) through the device.
Abstract:
Disclosed is a low and weakly-interlaced industrial polyester multifilament yarn, which has excellent flatness and flat uniformity, and in which the number of monofilament layers is properly controlled according to a fineness of the low and weakly-interlaced polyester multifilament yarn and monofilaments are interlaced, thereby reducing a surface brightness gradient of a coated fabrics, produced using the low and weakly-interlaced polyester multifilament yarn, when light is irradiated to the coated fabrics. Additionally, the present invention provides a method of producing the low and weakly-interlaced polyester multifilament yarn, in which air pressure of an air interlacing device, a yarn path, tension of the yarn, an helix angle of the yarn wound around a cheese, intervals between first guides, located before and after the air interlacing device, and second guides, located in the air interlacing device, and a position of a wave plate are properly controlled.