Abstract:
This disclosure discloses an encoder. The encoder includes a disk including a first and a second track. A first and a second rotating grating are formed in the first and second tracks, respectively. A first and a second detector are disposed so as to face the first and second tracks, and have a first fixed grating constructing a first diffraction interference optical system together with the first rotating grating and a second fixed grating constructing a second diffraction interference optical system together with the second rotating grating, respectively, and configured to detect a first and a second detection signal, respectively, from the first and second diffraction interference optical systems. At least one of the first and second rotating gratings is formed by a plurality of curved slits in a curved shape.
Abstract:
A hazardous condition alerting system is described that provides a method for alerting on a hazardous condition. The method may include transmitting a location data item identifying a location of an alerting apparatus to a remote server. The method may further include receiving alert information from the remote server when the remote server makes the determination that the location of the alerting apparatus corresponds to a hazardous location. And the method may further include providing a local alert on the alerting apparatus when the alert information from the remote server is received by the alerting apparatus.
Abstract:
This is an all-in-one radio frequency identification system for goods inventory and sale management, comprising at least one tag, an antenna unit and a multi-port reader comprising a micro control unit, a reader and a multiplexer. The tag is attached on each article. The antenna unit is RF coupled to the tag. The multiplexer built-in the multi-port reader is electrically coupled to the antenna unit. The reader built-in the multi-port reader is capable of transmitting RF signals, accessing commands and receiving tag signals from the multiplexer. The micro control unit is electrically coupled to the multiplexer and the reader to receive and process the reading signal and provide inventory and sale management functions and applications. Therefore, the all-in-one radio frequency identification system provides not only inventory and anti-theft functions but also information for consumer behavior research, and capable of doing stand alone operations.
Abstract:
A system is described for providing real time locating and gas exposure monitoring. The system may include a memory, interface, and processor. The memory may store an alarm data item including an amount of gas exposure and a location identifier. The processor may receive the alarm data item from a sensor device of a first user. The processor may identify a relative location of the first user based on the location identifier. The processor may determine a second user located within a proximity of the first user. The processor may communicate to the second user the relative location of the first user and the gas exposure of the first user. The processor may receive, from the second user, an indication of whether an emergency responder should be contacted. The processor may initiate communication with an emergency responder if the indication indicates an emergency responder should be contacted.
Abstract:
A motor rotational position detecting method detects the magnetic pole position of each phase of a three-phase AC servomotor, generates a three-phase square wave signal having a phase difference of 120 degrees, allocates data on the rotational position of a motor shaft to the edge of each square wave signal, calculates the rotational speed of the motor on the basis of the elapsed time from the previous edge detection point to this time edge detection point, and estimates the rotational position of the motor shaft at a certain period and outputs it on the basis of the rotational speed of the motor and the rotational position allocated to this time edge in the rotational section from this time edge detection point to the next edge detection point. As a result, a detection mechanism can be constructed with a small installation space and at low cost and the output of a high-resolution encoder can be obtained in a pseudo manner.
Abstract:
A system compatible for different types of signals relates to a motor includes a differential amplifier, a comparator, and a transmitting device. The differential amplifier is configured to receive one of a differential digital pulse signals pair and a differential analog signals pair. The differential digital pulse signals pair is converted to a first digital signal, and the differential analog signals pair is converted to an analog signal by the differential amplifier. The comparator is configured to convert the analog signal into a second digital signal. The first digital signal is received and outputted by the comparator. The transmitting device is configured to convert a data signals pair to a binary code, and convert differential reference digital signals pairs to reference digital signals. The reference digital signals, the first and second digital signals are received by an external computing device.
Abstract:
A manufacturing method for a code wheel for a rotary encoder is provided. The code wheel includes, in a central portion, a hole into which a rotary shaft of a rotary member is fitted and a code portion including a radial code pattern in a circumferential edge portion. The manufacturing method is configured to include the steps of forming the code portion and a reference circle in a plate so that the reference circle has a radius larger than a radius of the hole by a tolerance of deviation between a center position of the code portion and a center position of the hole and has a same center as that of the code portion; and forming the hole in the plate in which the code portion and the reference circle are formed, so as to be contained in the reference circle.
Abstract:
A helicopter engine fuel control anticipates sudden changes in engine power demand during yaw inputs to thereby minimize engine and main rotor speed droop and overspeed during yaw maneuvers. The rate (121,123) of yaw control (107) position change generates (110) a yaw component (104) of a helicopter fuel control (52) fuel command signal (70). The magnitude of the yaw component is also dependant upon the rate of yaw control position change (703). The fuel command signal yaw component (104) is overridden (113,115) when rotor decay rate (209,217) has been arrested during a sharp left hover turn (216); when the yaw component is removing fuel (239) during rotor droop (238); and when the yaw component is adding fuel (228) during rotor overspeed (227).