Abstract:
A low temperature process for silicon-based field emitter tip sharpening. A rough silicon-based field emitter tip is exposed to xenon difluoride gas in a process chamber to carry out low-temperature, isotropic etching of the rough silicon-based field emitter tip to produce a final, sharpened field emitter tip.
Abstract:
A field emission array includes a plurality of pixels. Each pixel includes at least one resistor, at least one emitter tip overlying each resistor, and at least one substantially vertically oriented conductive line positioned laterally adjacent each resistor. The pixels may be arranged in substantially parallel lines. Adjacent pixels are separated and electrically isolated from one another by recessed areas located therebetween. Each conductive line is located within a recessed area. The conductive lines of a field emission array that includes lines of pixels may contact the resistors of each pixel of the corresponding line of pixels. Base portions of at least some of the emitter tips of the field emission array may overlie a portion of the conductive line that corresponds to the pixel of which such emitter tips are a part. Field emission displays that include such field emission arrays are also disclosed.
Abstract:
A system and method for fabricating a FED device is disclosed. The system and method provide for use of PECVD hydrogenation followed by nitrogen plasma treatment of the tip of the current emitter of the FED device. The use of this process greatly reduces the native oxides in the tip of the current emitter. Such native oxides function as undesirable insulators degrading current emission. By reducing the amount of oxides in the tip, this invention provides for an increase in the current emission of the FED device.
Abstract:
A method is provided for forming pairs of element electrodes and conductive layers between the element electrodes on a substrate. The method includes a step of forming banks surrounding electrode-forming regions for forming the element electrodes and conductive layer-forming regions for forming the conductive layers; a step of discharging first droplets toward the electrode-forming regions; and a step of discharging second droplets toward the conductive layer-forming regions.
Abstract:
An electron emissive composition comprises a barium tantalate composition of the formula (Ba1-x, Cax, Srp, Dq)6(Ta1-y, Wy, Et, Fu, Gv, Caw)2O(11nullnull) where null is an amount of about 0 to about null3; and wherein D is either an alkali earth metal ion or an alkaline earth ion; E, F, and G, are alkaline earth ions and/or transition metal ion; x is an amount of up to about 0.7; y is an amount of up to about 1; p and q are amounts of up to about 0.3; and t is an amount of about 0.05 to about 0.10, u is an amount of up to about 0.5, v is an amount of up to about 0.5 and w is an amount of up to about 0.25. A method for manufacturing an electron emissive composition comprises blending a barium tantalate composition with a binder; and sintering the barium tantalate composition with the binder at a temperature of about 1000null C. to about 1700null C.
Abstract:
In a plasma display panel, a back substrate has a first metal electrode on a back base substrate, and a front substrate has a transparent electrode and a second metal electrode on a front base substrate. The front substrate is arranged opposite to the back substrate. At least one of the first metal electrode and the second metal electrode being formed by e electrophotographic printing. At this time, coated metal particles are used as toner, which particles are formed by coating metal particles having an average diameter of 0.1 to 20 nullm with thermoplastic resin. The electrophotographic printing enables manufacture of plasma display panels and the like with less waste of materials.
Abstract:
A method for fabricating a field emission structure is disclosed. A first dielectric layer and a second material layer are disposed over a substrate and at least one emitter tip thereon. Planarization of the second layer exposes regions of the first layer that cover the emitter tip, which regions may then be removed through the second layer. Substantially Substantial removal of the second layer reduces any conductive defects that protrude from a surface of the first layer. A third, dielectric layer and fourth, grid layer are then formed. Planarization of the fourth layer forms grid openings and exposes dielectric material of the third layer which overlies the emitter tip. Dielectric material of one or both underlying layers may then be removed to expose the outer surfaces of the emitter tip.
Abstract:
A triode-type field emission device includes an insulating substrate; a cathode formed on the insulating substrate; a field emitter aligned on the cathode, wherein the field emitter includes a plurality of emitter tips and each emitter tip has the diameter of nanometers; an insulating layer positioned around the field emitter for electrically isolating the field emitter; and a gate electrode formed on the insulating layer, wherein the gate electrode is closed to an upper portion of the field emitter. Therefore, the triode-type field emission device may be operable in a low voltage.
Abstract:
A method of reducing electronic work function, reducing threshold field emission values, converting semiconducting behavior to metallic behavior, increasing the electron density state at the Fermi level, and increasing electron emission site density, of nanostructure or nanotube-containing material, the method including: forming openings in the nanotube-containing material; introducing a foreign species such as an alkali metal into at least some of the openings; and closing the openings, thereby forming capsules filled with the foreign species, and forming field emission cathode and flat panel displays using these capsules.
Abstract:
The present invention is intended to efficiently concentrate an electric field and to improve electron emission efficiency in a field emission cathode constituting a flat display device. A field emission cathode constituting a flat display device is constituted to have an electron emission section arranged to face an electron applied surface. At least the electron emission section is formed out of conductive, thin plate-like fine particles. A substance having a work function of 2 to 3 nulleVnull is bonded on the surfaces of the thin plate-like fine particles.