Abstract:
A short arc type super high pressure discharge lamp has a pair of electrodes, a light emitting portion in which greater than 0.15 mg/mm3 is enclosed, and sealing portions provided on both side of the light emitting portion, wherein at least one of the pair of electrodes has a thick portion which extends into one of the sealing portions and a coil is wound around the thick portion in the one of the sealing portion via gap.
Abstract translation:短弧型超高压放电灯具有一对电极,其中封闭有大于0.15mg / mm 3的发光部分和设置在发光部分两侧的密封部分,其中至少一个 一对电极的厚度部分延伸到一个密封部分中,并且线圈缠绕在密封部分通孔之一中的厚部分上。
Abstract:
In order to improve a pumping light source for laser-active media comprising an outer member enclosing a gas discharge medium, a first electrode acting as a cathode and having a first electrode end located within the outer member, a second electrode acting as an anode and having a second electrode end located within the outer member and a gas discharge chamber located within the outer member between the electrode ends facing one another, in such a manner that the service life thereof is longer it is suggested that the first electrode end be essentially cooled by radiation and that a predominantly diffuse gas discharge be formed proceeding from an areally extended surface area located at the first electrode end.
Abstract:
A xenon lamp in which fluctuation of the arc can be suppressed and the time until formation of the flicker phenomenon delayed by having an anode with a flattened or rounded anode tip, a rounded or flattened back end; a portion with a diameter that gradually increases from the anode tip toward the back end of the anode; a portion with a decreasing diameter located behind the portion with the increasing diameter of an axial length which is greater than the length in the axial direction of the portion with an increasing diameter; and a portion with a maximum outside diameter formed in a transition area between the portion with the increasing diameter and the portion with a decreasing diameter, and that the transition area between the portion with the increasing diameter and the portion with the decreasing diameter is formed to be continuous.
Abstract:
A high-pressure discharge lamp is effective to prevent initial blackening on an outer casing thereof, is of a long service life, and can easily be manufactured. A tungsten wire is wound as a double coiled winding around an electrode metal rod, leaving a tip end thereof, and the double coiled winding is machined into a melted tip end by a YAG laser beam, with the remaining double coiled winding used as a coil. The left tip end of the metal rod is machined into a nipple on the distal end of the melted tip end. If it is assumed that the melted tip end has a diameter D1 and a length L1 up to its distal end, the nipple has a proximal end having a diameter D2 and a length L2 from the proximal end up to the distal end thereof, and the coil and the melted tip end (including the nipple) have a volume V1 and the melted tip end (including the nipple) has a volume V2, then the electrode assembly is machined to satisfy at least one of the conditions 0.15nullD2/D1null0.3, 0.2nullL2/L1null0.4, and 0.2nullV2/V1null0.4. The machined electrode assembly is incorporated as an electrode into a lamp bulb.
Abstract:
Method and apparatus for mitigating the transport of debris generated and dispersed from electric discharge sources by thermophoretic and electrostatic deposition. A member is positioned adjacent the front electrode of an electric discharge source and used to establish a temperature difference between it and the front electrode. By flowing a gas between the member and the front electrode a temperature gradient is established that can be used for thermophoretic deposition of particulate debris on either the member or front electrode depending upon the direction of the thermal gradient. Establishing an electric field between the member and front electrode can aid in particle deposition by electrostatic deposition.
Abstract:
A discharge device has a diode with a depletion region, a channel extending through a surface of the diode, and a gas within the channel. The gas is excited and a discharge formed by reverse biasing the diode and establishing an electric field in the depletion region of the diode.
Abstract:
A high-pressure discharge lamp is configured to regulate the relationship between the radius r (mm) of the tungsten rods forming the electrodes and the lamp current I (amperes) using the formula 1 1.5 null I null null r 2 null 9 when the ratio of the circumference of the circle to its diameter is expressed as null. The high-pressure discharge lamp suppresses early blackening, and achieves a long-life light source.
Abstract:
There is provided a cold cathode fluorescent lamp including a transparent tube including first and second light-emitting areas defined by partitioning an inner space of the transparent tube, a first terminal electrode positioned in the first light-emitting area and at a longitudinal end of the first light-emitting area located closer to an end of the tube, a second terminal electrode positioned in the second light-emitting area and at a longitudinal end of the second light-emitting area located closer to the other end of the tube, a first intermediate electrode positioned in the first light-emitting area and at the other longitudinal end of the first light-emitting area, a second intermediate electrode positioned in the second light-emitting area and at the other longitudinal end of the second light-emitting area, a first lead-in wire connected to the first terminal electrode through the longitudinal end of the first light-emitting area, a second lead-in wire connected to the second terminal electrode through the longitudinal end of the second light-emitting area, a third lead-in wire connected to the first intermediate electrode through the other longitudinal end of the first light-emitting area, and a fourth lead-in wire connected to the second intermediate electrode through the other longitudinal end of the second light-emitting area. The above-mentioned cold cathode fluorescent lamp makes it possible to lower a break-down voltage and a discharge voltage down to about halves of them in a conventional fluorescent lamp, and hence, discharged electrons are not attracted to a metal part. Thus, it is possible to prevent a cold cathode fluorescent lamp from not turning on due to electron discharge.
Abstract:
A high-pressure metal halide discharge lamp includes a sealed light-transmitting discharge vessel, first and second electrodes disposed in the discharge space, and a pair of conductive wires connected to the respective electrodes. The sealed light-transmitting discharge vessel has a pair of seals and envelops a discharge space, which has a gas filling comprising rare gas and metal halides. A first electrode with an emitter disposed in the discharge space at an one side is made of a metal having a high melting point. A second electrode without an emitter disposed in the discharge space at the other side is made of a metal having a high melting point. The pair of conductive wires, which are connected to the respective electrodes, are located in the respective seals and extend from the discharge vessel.