Abstract:
In an electron source having an electron emitting member, the electron emitting member is connected to a first or second conductive member by a third conductive member which is connected to the first or second conductive member through an aperture forming in an insulating member, and such aperture has such a shape as to become narrower from an end of the third conductive member toward the other end. Such configuration avoids that the third conductive member is damaged in the connecting portion with the first or second conductive member by the thermal stress therein.
Abstract:
A metal-containing composition contains an organic acid group, a transition metal, an alcohol amine, and water. The alcohol amine is preferably expressed by chemical formula (1):NH.sub.m R1.sub.n (R2OH).sub.3-m-n (1)where R1 is an alkyl group having 1 to 4 carbon atoms, R2 is an alkyl carbon chain having 1 to 4 carbon atoms and m and n are integers of 0 to 2 that satisfy the relationship of (m+n)
Abstract:
An image forming apparatus, according to the present invention, comprises a first substrate whereon are provided a functional element and electric wiring that is connected to the functional element, and a second substrate whereon is an area where an image is to be formed, and wherein, with the first substrate and the second substrate being located opposite to each other, space between the first substrate and the second substrate is kept in a pressure-reduced state so as to form an image in the area on the second substrate, and wherein the electric wiring is formed of a laminated conductive material by a process that plates a printed pattern, which is initially deposited by a printing process.
Abstract:
An electron-emitting device comprises a pair of electrodes arranged on a substrate and an electroconductive film connecting said electrodes and having an electron-emitting region formed therein. The electron-emitting region contains a fissure having an even width of less than 50 nm and preferably shows a voltage applicable length of less than 5 nm. An electron source comprising a plurality of such electron-emitting devices is capable of realizing uniform electron beam emission and an image-forming apparatus comprising such an electron source is suitable for high resolution image display.
Abstract:
In order to cause a multi-electron source having electron emitters wired in the form of a matrix to emit electrons without any variations, there is provided an electron generating device including a multi-electron source (601) having a plurality of electron emitters (1002) wired in the form of a matrix through a plurality of data wiring layers (1004) and a plurality of scanning wiring layers (1003), and a driving circuit for driving the multi-electron source (601), the driving circuit including a first driving means (603) for applying a first voltage (Vs) to a scanning wiring layer to which an electron emitter which is to emit electrons is connected, and applying a second voltage (Vns) to a scanning wiring layer to which an electron emitter which is not to emit electrons is connected, and a second driving means (602) for applying a third voltage (Ve) to a data wiring layer to which an electron emitter which is to emit electrons is connected, and applying a fourth voltage (Vg) to a data wiring layer to which an electron emitter which is not to emit electrons is connected, wherein the second voltage (Vns) is substantially equal to the third voltage (Ve).
Abstract:
An electron-emitting device comprises an electroconductive film including an electron-emitting region disposed between a pair of electrodes arranged on a substrate. The electron-emitting region is formed close to the step portion formed by one of the electrodes and the substrate.
Abstract:
An electron-beam generator comprises an electron-emitting device and a modulating electrode capable of modulating an electron beam emitted from the electron-emitting device in response to an information signal. The modulating electrode and the electron-emitting device are laminated so as to interpose an insulating substrate therebetween.
Abstract:
A matrix addressable flat panel display includes a flat cathode operable for emitting electrons to an anode when an electric field is produced across the surface of the flat cathode by two electrodes placed on each side of the flat cathode. The flat cathode may consist of a cermet or amorphic diamond or some other combination of a conducting material and an insulating material such as a low effective work function material. The electric field produced causes electrons to hop on the surface of the cathode at the conducting-insulating interfaces. An electric field produced between the anode and the cathode causes these electrons to bombard a phosphor layer on the anode.
Abstract:
An electron source is constituted of a substrate, and an electron-emitting element provided on the substrate. The electron-emitting element comprises a plurality of electrode pairs having an electroconductive film between each of the electrode pairs. An electron-emitting region is formed on the electroconductive film of selected ones of the electrode pairs. A method of testing the electrode pairs and/or the thin film for a defect and then generating an electron-emitting region so as to have no defect is available.
Abstract:
A multiple electron emission device having a substrate, a pair of opposed electrodes disposed on the substrate, and an electron emission section formed with grains between the electrodes. Selected portions of the electron emission section are coated with a conductor, semiconductor or insulating material by mask deposition or the like so as to divide the electron emission section into a dotted or linear array of electron emitting portions.