Abstract:
A resistive type particle detection device includes a cathode, an amplification micro-gate, and an anode composed of a flat insulator including resistive tracks arranged on a face of the flat insulator facing the amplification micro-gate and reading tracks arranged on the opposite face of the flat insulator, the reading tracks being connected to a reading system. In a non-limiting embodiment, the resistive type particle detection device further includes a conductive track positioned between two resistive tracks.
Abstract:
Disclosed in an alpha particle detection apparatus using a dual probe structured ionization chamber and a differential amplifier, the apparatus including: an ionization chamber forming electric field thereinside by bias power applied to a surface thereof; a main probe unit absorbing ionic charges generated in an occurrence of alpha (α) decay in the ionization chamber; a guard ring unit absorbing leakage current generated between the ionization chamber and the main probe unit and flowing the leakage current to a ground; an auxiliary probe allowing surrounding noise to be introduced therein; first and second preamplifiers amplifying fine electrical signals to a predetermined magnitude; and a differential canceling a noise signal and outputting an alpha particle detection signal by amplifying a voltage difference between the preamplified electrical signals. As such, it is possible to effectively detect alpha (α) particles which are a type of radiation.
Abstract:
The present invention relates to a dosimetry device (10) for determining a spatial distribution of a quantity of radiation incident on the dosimetry device. The device comprises a segmented electrode assembly (12) comprising an electrically non-conducting substrate (13) having a plurality of electrode elements (14) provided thereon, surrounded by ground electrodes. The device further comprises an electrically conducting sheet (16) comprising a protrusion (17) arranged such as to define a plurality of ionization chamber cavities (18) between the segmented electrode assembly (12) and the electrically conducting sheet (16). The device also comprises a voltage applying means (28) for applying a voltage difference between the electrically conducting sheet (16) and the plurality of electrode elements (14) and a routing means (25) for routing a plurality of ionization currents corresponding to the plurality of electrode elements (14) to a processing means.
Abstract:
An electronic amplifying substrate, including: a glass base material having an insulating property; conductive layers formed on both main surfaces of the glass base material; and a plurality of through holes formed on a lamination body of the glass base material and the conductive layer, wherein an electric field is formed in the through hole by a potential difference between both conductive layers during application of a voltage to a surface of the conductive layer so that an electron avalanche amplification occurs in the through hole, and an insulation part is formed on at least one main surface of the glass base material, with one of the end portions of the insulation part formed to surround an opening part of the through hole of the glass base material, and the other end portion formed in contact with the end portions of the conductive layers.
Abstract:
In order to obtain a dose-rate measuring system that reduces an influence of an electromagnetic induction noise acting around an ionization chamber and a signal converter, a cabinet of the ionization chamber, shields of cables, a cabinet of the signal converter, and a cabinet of a measuring unit are connected in series, and a single-point ground is performed at the measuring unit, and other units except the grounded measuring unit are insulated from the earth, and moreover, a heatproof insulating material having water repellency is coated on a fixed portion of the ionization chamber, whereby the ionization chamber is electrically insulated from a chassis at a fixed side, and the heatproof insulating material having water repellency is coated on a connecting portion of a connector for connecting a cable to another cable, after a waterproof process is performed on the connecting portion by using a bonding tape.
Abstract:
The present disclosure relates to an ionization chamber with a built-in temperature sensor, which is especially adapted for devices, such as X-ray units, gamma irradiators and linear accelerators, whichever is used for performing radiation dose output measurement accordingly. In an embodiment, the ionization chamber comprises: a cavity, an inner electrode, a chamber wall, an outer electrode, a guard electrode and a calibrated temperature sensor for detecting real-time temperature inside the cavity of ionization chamber to be used in the correction process of radiation dose measurement signals. With the aforesaid device, not only the accuracy of measurement can be improved effectively, but also the time consumed in a radiation dose measurement period can be reduced greatly since it will no longer bear the disadvantage that the radiation dose measurement has to wait until the temperatures inside and outside the cavity of ionization chamber had reached a thermal equilibrium before the measurement.
Abstract:
A radiation detection assembly that includes an ionization chamber having a cathode and an anode. The ionization chamber detects radiation that passes into the ionization chamber. The assembly includes an exterior enclosure defining a hollow internal volume within which the ionization chamber is enclosed. The exterior enclosure includes at least two layers. At least one of the layers provides an electromagnetic shield to the hollow internal volume and the ionization chamber enclosed therein.
Abstract:
A system may include a conductive substrate, a plurality of conductive nanostructures disposed on a first side of the conductive substrate, an insulating substrate, and a plurality of electrodes disposed on a first side of the insulating substrate. The first side of the conductive substrate faces the first side of the insulating substrate, and each of the plurality of electrodes is electrically connected to the conductive substrate. In other aspects, a system may include a first insulating substrate and a second insulating substrate, where a first side of the first insulating substrate faces a first side of the second insulating substrate, and each of a first plurality of electrodes is electrically connected to a respective one of a second plurality of electrodes.
Abstract:
A system may include a conductive substrate, a plurality of conductive nanostructures disposed on a first side of the conductive substrate, an insulating substrate, and a plurality of electrodes disposed on a first side of the insulating substrate. The first side of the conductive substrate faces the first side of the insulating substrate, and each of the plurality of electrodes is electrically connected to the conductive substrate.In other aspects, a system may include a first insulating substrate, a first plurality of electrodes disposed on a first side of the first insulating substrate, a second insulating substrate, a second plurality of electrodes disposed on a first side of the second insulating substrate, and a plurality of conductive nanostructures disposed on each of the second plurality of electrodes. The first side of the first insulating substrate faces the first side of the second insulating substrate, and each of the first plurality of electrodes is electrically connected to a respective one of the second plurality of electrodes.