Abstract:
A light projection system includes a light module emitting a light beam and a movable mirror reflecting the light beam toward a surface. A graphics processing unit processes video data to compensate for a response of the light module. The response is an optical power of the light beam produced by the light module for a given forward current through the light module. A light source driver controls the light module as a function of the processed video data. Colors of the images from the video data produced on the surface by the light beam would otherwise not look as they are intended to look due to changing of the response of the light module, but the processing of the video data alters the video data such that the colors of the images from the video data produced on the surface look as they are intended to look.
Abstract:
Described herein is a video projection system including an optical module with at least one collimated light source to generate a light beam and at least one movable mirror to reflect the light beam. The video projection system also includes a video source producing a digital video stream in accordance with a clock signal and a movement synchronization signal, as well as a projector system. The projector system includes mirror control circuitry configured to control movement of the at least one movable mirror in accordance with the clock signal and the movement synchronization signal, a light source controller configured to control generation of collimated light by the at least one collimated light source, and processing circuitry configured to receive the digital video stream, and to generate control signals for the light source controller based upon the received digital video stream.
Abstract:
Disclosed herein is an electronic device that includes a peak detection circuit configured to receive a mirror sense signal from an oscillating mirror and to generate peak information for a mirror period as a function thereof. The electronic device includes a mirror control circuit that estimates an opening angle of the oscillating mirror as a function of the peak information, generates a control signal for the oscillating mirror as a function of the estimated opening angle, and resets the peak detection circuit at an end of the mirror period.
Abstract:
A color calibration device for a laser scanning apparatus includes a compensation unit configured to electronically compensate for positional errors of the three-color laser source. The compensation unit includes an emitted light detector configured to measure a power of an emitted light beam. A calibration unit coupled to the emitted light detector has a controller configured to generate a quantity correction value for the three-color laser source. A laser source control element is configured to generate a control quantity for the three-color laser source, based on the quantity correction value. A dominant color detector is configured to detect any dominant color in the light beam being projected and actuate the controller for the dominant color.
Abstract:
A touch controller is coupled to a touch screen and detects a first gesture at a first point on the touch screen. The first gesture includes physical contact of the touch screen by a user device at the first point. The touch controller detects a second gesture that is associated with movement of the user device from the first point to a second point on the touch screen. The second gesture includes detecting movement of the user device within a sensing range from the first point to the second point. The sensing range corresponds to an orthogonal distance from a surface of the touch screen. The touch controller detects a third gesture at the second touch point. The third gesture includes physical contact of the touch screen at the second touch point. Upon detecting the first, second and third gestures the touch controller performs a corresponding action.
Abstract:
A method for testing a strip of MEMS devices, the MEMS devices including at least a respective die of semiconductor material coupled to an internal surface of a common substrate and covered by a protection material; the method envisages: detecting electrical values generated by the MEMS devices in response to at least a testing stimulus; and, before the step of detecting, at least partially separating contiguous MEMS devices in the strip. The step of separating includes defining a separation trench between the contiguous MEMS devices, the separation trench extending through the whole thickness of the protection material and through a surface portion of the substrate, starting from the internal surface of the substrate.
Abstract:
An electronic device includes an analog-to-digital converter adapted to receive a radio-frequency signal and adapted to provide therefrom a digital signal, wherein the radio-frequency signal may include an interference signal. The electronic device has a controller adapted to perform a digital measure on the digital signal and adapted to generate therefrom a selection signal having a first value indicating a non-interference condition in the radio-frequency signal and having a second value indicating an interference-condition in the radio-frequency signal. A selector is adapted to transmit the digital signal in case the selection signal has the first value and to transmit a signal replacing the digital signal in case the selection signal has the second value.
Abstract:
An optical mouse includes an image sensor for providing image data via an analog-to-digital converter to a correlation circuit and a motion estimation circuit to provide output signals representative of motion of the mouse. The output signals may be disabled when the mouse is lifted away from the working surface. This may be achieved by high-pass filtering the signals, summing each frame in a summer to provide a single value, and comparing this to a threshold. If the filtered and summed value exceeds the threshold, this may indicate that the image contains in-focus objects, and that the mouse is on the working surface.
Abstract:
A packaged MEMS device, wherein at least two support structures are stacked on each other and are formed both by a support layer and a wall layer coupled to each other and delimiting a respective chamber. The chamber of the first support structure is upwardly delimited by the support layer of the second support structure. A first and a second dice are accommodated in a respective chamber, carried by the respective support layer of the first support structure. The support layer of the second support structure has a through hole allowing wire connections to directly couple the first and the second dice. A lid substrate, coupled to the second support structure, closes the chamber of the second support structure.
Abstract:
An enhanced sensitivity radio frequency (RF) front end circuit includes a transformer configured to convert a balanced transmit signal to an unbalanced transmit signal and to convert a second filtered receive signal to a balanced receive signal. A switch in a first state receives the unbalanced transmit signal from the transformer and transfers the unbalanced transmit signal to an amplifier circuit and receives an amplified transmit signal from the amplifier circuit and transfers the amplified transmit signal to a filter. In a second state, the switch receives a first filtered receive signal from the filter and transfers the first filtered receive signal to the amplifier circuit and receives a second filtered receive signal from the amplifier circuit and transfers the second filtered receive signal to the transformer. In a first state, the amplifier circuit receives the unbalanced transmit signal from the switch and amplifies the unbalanced transmit signal to generate the amplified transmit signal, and in a second state, the amplifier circuit receives the first filtered receive signal from the switch and attenuates selected first frequencies to generate the second filtered receive signal.