Abstract:
A tunable element in the microwave frequency range is described that may include one or more tunable elements that are directly digitally controlled by a digital bus connecting a digital control circuit to each controlled element. In particular, each digital signal is filtered by a digital isolation technique so that the signal reaches the tunable elements with very low noise. The low noise digital signals are then converted to analog control voltages. The direct D/A conversion is accomplished by a special D/A converter which is manufactured as an integral part of a substrate. This D/A converter in accordance with the invention may consist of a resistor ladder or a directly digitally controlled capacitor. The direct digitally controlled capacitor may be a cantilevered type capacitor having multiple separate electrodes or sub-plates representing binary bits that may be used to control the capacitor. A low cost microwave oscillator is disclosed in which some of the filters and oscillators are direct digitally tuned elements.
Abstract:
In a local oscillator for a tuning arrangement for both TV and FM signals there is substantial risk of parasitic oscillation. A special provision is disclosed for effectively reducing this risk. The special provision is a connection of a damping resistor (R1a) for suppressing parsitic oscillations between ground and a junction (J2) of a parallel LC resonator of the local oscillator.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL, control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
A method of selecting fabrication parameters for an on-chip inductor of an integrated circuit. The integrated circuit includes a capacitor fabricated prior to the inductor. The capacitance of the capacitor is measured and, based on the measured capacitance and on a desired frequency range, a suitable inductor is fabricated. The integrated circuit may include a voltage controlled oscillator (VCO), and the selection of the fabrication parameters of the inductor includes the selection of a lithography mask for the fabrication of the inductor for maximizing yield across the wafer. Therefore, the integrated circuit can have exactly one VCO for covering the desired frequency range, as opposed to at least two VCO's with overlapping frequency ranges, thereby saving significant silicon area and increasing the yield per wafer.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PILL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
A phase-locked loop circuit includes an array of selectable capacitors formed within the phase-locked loop circuit to enable the phase-locked loop circuit to provide a degree of coarse frequency control by adding or removing capacitors and a degree of fine frequency control by sinking or sourcing current from a charge pump into a loop filter. A finite state machine is provided within a voltage controlled oscillator calibration circuit that communicates with an external baseband processor to initiate a calibration process, and further to determine how many capacitors of an array of capacitors if formed within the phase-locked loop circuit should be coupled to provide the coarse frequency control.
Abstract:
A tunable element in the microwave frequency range is described that may include one or more tunable elements that are directly digitally controlled by a digital bus connecting a digital control circuit to each controlled element. In particular, each digital signal is filtered by a digital isolation technique so that the signal reaches the tunable elements with very low noise. The low noise digital signals are then converted to analog control voltages. The direct D/A conversion is accomplished by a special D/A converter which is manufactured as an integral part of a substrate. This D/A converter in accordance with the invention may consist of a resistor ladder or a directly digitally controlled capacitor. The direct digitally controlled capacitor may be a cantilevered type capacitor having multiple separate electrodes or sub-plates representing binary bits that may be used to control the capacitor. A low cost microwave oscillator is disclosed in which some of the filters and oscillators are direct digitally tuned elements.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
In various embodiments, the invention provides a frequency controller to control and provide a stable resonant frequency of a clock generator and/or a timing and frequency reference. Such stability is provided over variations in a selected parameter such as temperature and fabrication process variations. The various apparatus embodiments include a sensor adapted to provide a signal in response to at least one parameter of a plurality of parameters; and a frequency controller adapted to modify the resonant frequency in response to the second signal. In exemplary embodiments, the sensor is implemented as a current source responsive to temperature fluctuations, and the frequency controller is implemented as a plurality of controlled reactance modules which are selectively couplable to the resonator or to one or more control voltages. The controlled reactance modules may include fixed or variable capacitances or inductances, and may be binary weighted. Arrays of resistive modules are also provided, to generate one or more control voltages.
Abstract:
At the same control voltage Vtune, the oscillation frequency with only switches SW3 and SW4 being closed is higher than that with only switches SW1 and SW2 being closed. Accordingly, even when the oscillation frequency is lower than designed with only the switches SW1 and SW2 being closed and the capacitance of varactor diodes D1 and D2 cannot be controlled to provide the desired oscillation frequency, the desired oscillation frequency can be provided by closing only the switches SW3 and SW4 to control the capacitance of the varactor diodes D1 and D2. On the oscillation frequency, a coarse tuning can be performed by controlling the switches SW1 to SW4, while a fine tuning can be performed with the varactor diodes D1 and D2. Consequently, the range of the oscillation frequency is increased.