Abstract:
Provided is a method of manufacturing a driving-device for a unit pixel of an organic light emitting display having an improved manufacturing process in which the driving device can be manufactured with a smaller number of processes and in simpler processes. The method includes: forming an amorphous silicon layer including a first amorphous region and a second amorphous region disposed on the same plane of a substrate; forming an SAM (self-assembled monolayer) having a hydrophobic property on the first amorphous region; coating an aqueous solution in which nickel particles are dispersed, on the second amorphous region and the SAM, wherein a larger amount of nickel particles than on the SAM are dispersed on the second amorphous region using a hydrophilicity difference between the second amorphous region and the SAM; vaporizing the SAM through an annealing process and simultaneously performing metal induced crystallization in which the nanoparticles are used as a medium, to crystallize the first and second amorphous regions and to form first and second crystallization regions; patterning the first and second crystallization regions to form first and second channel regions; and forming first and second electrodes on the first and second channel regions.
Abstract:
Disclosed is a composition, an organic insulating film including the same, an organic thin film transistor including the organic insulating film, an electronic device including the organic thin film transistor and methods of fabricating the same. In the composition, an organic polymer material having a carboxyl group and an organic silane material having an electron-donating group are included to thus realize a structure which may further stabilize an unreacted crosslinking material. Thereby, a hysteresis phenomenon may be decreased and transparency may be increased, thus making it possible to assure stability upon exposure to air. Accordingly, the lifetime of the organic thin film transistor may be lengthened.
Abstract:
An exemplary organic semiconductor copolymer includes a polymeric repeat structure having a polythiophene structure and an electron accepting unit. The electron accepting unit has at least one electron-accepting heteroaromatic structure with at least one electron-withdrawing imine nitrogen in the heteroaromatic structure or a thiophene-arylene comprising a C2-30 heteroaromatic structure. Methods of synthesis and electronic devices incorporating the disclosed organic semiconductors, e.g., as a channel layer, are also disclosed.
Abstract:
Disclosed are methods of fabricating organic thin film transistors composed of a substrate, a gate electrode, a gate insulating film, metal oxide source/drain electrodes, and an organic semiconductor layer. The methods include applying a sufficient quantity of a self-assembled monolayer compound containing a live ion to the surfaces of the metal oxide electrodes to form a self-assembled monolayer. The presence of the live ion at the interface between the metal oxide electrodes and the organic semiconductor layer modifies the relative work function of these materials. Further, the presence of the self-assembled monolayer on the gate insulating film tends to reduce hysteresis. Accordingly, organic thin film transistors fabricated in accord with the example embodiments tend to exhibit improved charge mobility, improved gate insulating film properties and decreased hysteresis associated with the organic insulator.
Abstract:
Disclosed herein is a method for fabricating an organic thin film transistor that includes a gate electrode, a gate insulating film, source/drain electrodes and an organic semiconductor layer formed in this order on a substrate wherein the surface of the gate insulating film on which source/drain electrodes are formed is impregnated with an inorganic or organic acid, followed by annealing. According to the method, the surface of a gate insulating film damaged by a photoresist process can be effectively recovered. In addition, organic thin film transistors having high charge carrier mobility and high on/off current ratio can be fabricated.
Abstract:
A method for forming a pattern of an organic insulating film by forming an electrode on a substrate, coating an imprintable composition thereon to form an organic insulating film, pressurizing and curing the organic insulating film using a patterned mold to transfer a pattern of the mold to the organic insulating film, and etching a portion of the organic insulating film remaining on the electrode. Since a pattern of an organic insulating film can be formed by simple molding without the use of a photoresist, the overall procedure is simplified and eventually an organic thin film transistor with high charge carrier mobility can be fabricated by all wet processes.
Abstract:
A donor substrate for forming a nano conductive film includes a base substrate and a transferring layer that is disposed on the base substrate. The transferring layer includes nano conductive particles and an organic semiconductor. A method of patterning a nano conductive film is provided, wherein a donor substrate in which nano conductive particles are dispersed by employing an organic semiconductor having low molecular weight as a binder is prepared, and nano conductive particles are patterned on a receptor substrate by employing the donor substrate. The method can be used to prepare patterns of various devices including a display device such as an OLED and an OTFT. Such a device can be prepared simply and economically by preparing a device comprising nano conductive particles and an organic semiconductor in wet basis even without deposition.
Abstract:
Disclosed herein is an organic polymer semiconductor compound, a method of forming an organic polymer semiconductor thin film using the same, and an organic thin film transistor using the same. Example embodiments of this invention pertain to an organic polymer semiconductor having a side chain including a removable substituent, and to an organic thin film transistor using the organic polymer semiconductor for an organic active layer, which has lower leakage current, higher charge mobility, and/or a higher on/off ratio.
Abstract:
A method and apparatus for measuring the three-dimensional surface shape of an object using color informations of light reflected by the object. The method and apparatus for measuring the three-dimensional surface shape of the object, in which a real-time measurement of the three-dimensional surface is performed by projecting a beam of light having color information onto the object and detecting color distribution information according to levels of the object, thereby obtaining level information of the object.