Abstract:
A calibration target is disclosed. The calibration target is created such that a color patch is sensitive to drop weight changes based on drop weight variations that show greater changes in color for a given change in drop weight.
Abstract:
A method for generating a color mapping for a printing apparatus is described. The printing apparatus includes a plurality of colorants including a first colorant configured to reflect radiation having a first set of wavelengths and a second colorant configured to absorb radiation having a second set of wavelengths and emit radiation having a third set of wavelengths. The method includes obtaining spectral characteristics for the plurality of colorants, computing a gamut of colors available to the printing apparatus and determining a color mapping from an input color space to an output color space.
Abstract:
A printing system and method to process image data is disclosed. The printing system includes an identification module and image pipeline module include a linear threshold array algorithm and a halftoning algorithm to process the image data. An image pipeline module applies a linear threshold array algorithm to line regions and a halftoning algorithm to the non-line regions.
Abstract:
A method for color mapping is disclosed. A color mapping is generated based on an imaging model and a color model for an imaging device. The imaging model allows a set of perturbations to be modelled. A set of metamers is determined for one or more colors. For each metamer, at least the imaging model is used to estimate a color output with at least one modelled perturbation. The color outputs are used to select a Metamer from the set to be used for the color mapping.
Abstract:
A color look-up-table (LUT) is created for use by an imaging system which uses a resource to display an image and/or provides an attribute of the image. A method of creating the LUT, comprises selecting a threshold value of resource usage and/or metric of the attribute. A predetermined color look-up-table representing a mapping from color values of a first color gamut to color values displayable by the imaging system is accessed. The predetermined color look-up-table has nodes defining colors to be displayed for the said color values. Resource usage and/or attribute values associated with the said nodes are compared with the threshold value thereby determining the set of nodes of the predetermined gamut having a resource usage and/or attribute values less than the threshold value. A new look-up-table is created which maps the said predetermined color gamut look-up-table to the said set of nodes
Abstract:
A color image is processed into a renderable image. The color image comprises a plurality of pixels. Each pixel has colorimetry defined in a first color space. The renderable image comprises a plurality of renderable pixels defined by a device-vector in a second color space. For each pixel: a device-vector defined in the second color space is selected (301) based on the colorimetry defined in a first color space of the pixel. The device-vector comprises a plurality of elements. Each element includes an identifier and an accumulated weighting. An element of the selected device-vector is reselected (303) until the accumulated weighting (a) is greater than a threshold value (t) associated with the pixel (305). The levels for each color of the second color space (or mappings) for the currently selected (307) element of the selected device-vector is determined (309) to convert the pixel into a renderable pixel.
Abstract:
Certain methods and systems are described for encoding data in an image. According to an example, a set of metamers under a first set of conditions may be determined that vary under a second set of conditions. These may be used to generate a set of color mappings for a sampled color value, each color mapping being used for a different data value in the data. As such the data values may be detectable when the image is observed under the second set of conditions but not detectable when the image is observed under the first set of conditions.
Abstract:
A colorant for a printing apparatus is described. The colorant has a first component and a second component. The first component is configured to reflect radiation having a first set of wavelengths when the colorant is arranged on a substrate. The second component is configured to absorb radiation having a second set of wavelengths and emit radiation having a third set of wavelengths when the colorant is arranged on the substrate, the first and third set of wavelengths having at least one common wavelength.
Abstract:
In a method to generate a print specification color separation look-up table, a device color space is sampled to provide at least one sampled value. The sampled value is transformed to a device independent color space. The transformed sampled value is gamut mapped using a source color gamut and a color separation color gamut to provide a color separation value. The gamut mapping is performed in an expansion mode and a compression mode.