Abstract:
Disclosed is a gas permeable, sensible and latent heat exchange media having a multiplicity of passageways therethrough through which an air stream can flow, the sensible and latent heat exchange media. The heat exchange media comprises a fibrous support material, a finely powdered desiccant material and fire retardant contained in the fibrous support material. The fibrous support material and the fire retardant are capable of adsorbing sensible heat from a warm air stream and releasing the absorbed sensible heat into a cool air stream as the air stream flows through the sensible and latent heat exchange media. The desiccant material is capable of adsorbing moisture from a humid air stream flowing through the sensible and latent heat exchange media and capable of releasing the adsorbed moisture into a dry air stream flowing through the passageways of the sensible and latent heat exchange media.
Abstract:
A dehumidifier works in conjunction with a vehicle air conditioner to reduce both condensation and cooling load on the evaporator. A unique desiccant wheel design incorporates end plates separated by desiccant tubes that allow a cooling cross flow to be sent through and between the wheel end plates, over the outside of, but sealed from the inside of, the tubes. As outside air passes through the inside half of the tubes and is dried, the released latent heat of vaporization is picked up by the cooling cross flow, which is pre heated. It continues on across the wheel, where it is turned around, heated farther by engine waste heat, and then sent through the inside of the other half of the tubes to regenerate the desiccant.
Abstract:
A vapor exchange medium comprises a multiplicity of porous desiccant particles and a binder holding the particles together to form a solid shape. The binder includes a multiplicity of substantially spherical, covalently-bonded silica particles derived from a silica sol which are small enough to ensure sufficient covalent bonding of the silica particles to maintain the structural integrity of the vapor exchange medium, yet large enough relative to the pore size of the desiccant particles such that the silica particles do not materially adversely affect the adsorption properties of the desiccant particles. The vapor exchange medium has an isotherm separation factor of 0.07 to 0.1 The vapor exchange medium may be impregnated into a fibrous carrier to form a heat exchange element or device. Apparatus for making the a exchange device is also disclosed.
Abstract:
Desiccant-coated substrates, regeneratable rotary dehumidification wheels and other devices for gas (e.g., air) treatment using those substrates, and processes for making them are disclosed. The substrates may have coatings in thicknesses of from about 2 to about 10 mils containing particles of one or more adsorbent desiccants and an organic water-based binder. The desiccant particles retain a high fraction of their original adsorption capacity because the pores of the desiccant particles contain a pore-clearing agent prior to the binder setting and the pore-clearing agent leaves the pores during the manufacturing process to prevent the binder from blocking the pores. In preferred embodiments a mixture of different desiccants is used and a particle suspending agent keeps the particles well-mixed so that the desiccant particles in the coated substrate will be as well-mixed as possible. The suspending agent may also function as the pore-clearing agent. A pH-adjusting agent may be used to control the pH of the coating if the binder or another constituent of the coating is pH-sensitive.
Abstract:
A desiccant composition having a moderate Langmuir Type 1 moisture adsorption isotherm with a separation factor of from 0.05 to 0.13 is disclosed. The composition contains silica gel, a modified 13.times. molecular sieve (modified by replacing at least 20% of the sodium cations with other metallic cations, e.g., potassium cations), and desirably a hydrophobic adsorbent (desirably a hydrophobic molecular sieve). The composition may be used as the desiccant in a rotary regeneratable dehumidification wheel, thereby significantly enhancing dehumidification performance and simultaneously removing a significant proportion of the airborne pollutants typically contained in indoor and outdoor air.
Abstract:
A rotary gas treating apparatus has a front-stage rotor and a rear-stage rotor each consisting essentially of an adsorbent material and allowing gas flow along a rotational axis. These rotors have, within respective rotational areas thereof, adsorbing areas for introducing a treatment-object gas and desorbing areas for introducing a recycling gas. The adsorbing area of the front-stage rotor and the adsorbing area of the rear-stage rotor are disposed in the mentioned order in a continuous treatment-object gas flow passage from an upstream side thereof. The desorbing area of the front-stage rotor and the desorbing area of the rear-stage rotor are disposed in recycling gas flow passages, respectively. With the invention, a revolving direction of the front-stage rotor and a revolving direction of the rear-stage rotor are reverse to each other. Further, the adsorbing material of the front-stage rotor has a greater average pore diameter than that forming the rear-stage rotor. And, the two rotors are driven at different revolving speeds.
Abstract:
A system and method for real-time computer control of multi-wheel sorbent mass and energy transfer systems by optimization of calculated mass transfer ratios and measures of system effectiveness which are not subject to long system time constants.
Abstract:
Air conditioning apparatus for a building having an electrical grid operatively connected to receive electricity from a utility is disclosed. The apparatus includes compression refrigeration apparatus with an electric motor connected to drive a compressor, absorption refrigeration apparatus, a cogenerator, an air handler, induction mixing units, a system for circulating air to be conditioned through the air handler and then to said induction mixing units, apparatus for transferring heat from air in the air handler to ice, a heat transfer system connecting the absorption refrigeration apparatus to pump heat to a heat sink from air in the induction mixing units or from air in the air handler, electric circuitry connecting the electric motor of the compression refrigeration apparatus to the building electrical grid for energization, and a heat transfer system for transferring heat generated by the cogenerator into energizing relationship with the absorption refrigeration apparatus. The compression refrigeration apparatus is operable to make ice, while the cogenerator is operable to generate electricity and heat. The cogenerator is connected to provide electricity to the electrical grid of the building, and the induction mixing units include a fan for causing a flow of recirculated air from a space to be conditioned, and, when conditioned air is circulated thereto, for delivering to the space a mixture of conditioned air and recirculated air.
Abstract:
The present invention provides for a process of reducing the polarity on the internal surfaces of various zeolites having a SiO.sub.2 to Al.sub.2 O.sub.3 ratio of at least about 3 and an average pore diameter size within the range of from about 4 to about 10 angstroms. The modified zeolites in accordance with the present invention are prepared by heating the starting zeolite in an aqueous medium also containing an acid or a source of ammonium ions to at least partially dealuminize the zeolite and thereby increase the ratio of silicon to aluminum present in the tetrahedral structure. At the same time, the process provides for hydrogen ion exchange with respect to those zeolites which contain significant amounts of metallic cation in the structure thereby replacing the bulky metallic cations with less bulky hydrogen ions and thereby increasing the water adsorptive capacity of the zeolite. Achievement of the appropriate equilibrium between reduced surface polarity on the one hand and increased sorptive capacity of the zeolite on the other hand gives rise to zeolite materials having an isotherm with a separation factor within the range of from about 0.07 to about 0.1 which renders the modified zeolite an ideal desiccant for gas fired air conditioning and dehumidification equipment.
Abstract:
An element for adsorbing one or more active gases in an inert gas to obtain an inert gas such as air containing an inert gas such as air containing an ultra-low concentration active gas such as water vapor. The element is produced by laminating low density papers composed of inorganic fiber to form a matrix in the form of a gas adsorbing element having numerous small channels penetrating through opposite surfaces, impregnating the matrix with water glass in which synthesized zeolite powder is dispersed, and soaking the matrix in aqueous solution of aluminum salts, magnesium salts or calcium salts, and so on, to form metal silicate hydrogel on the paper and in the apertures between fibers of papers, and washing and drying the matrix and the metal silicate hydrogel to obtain the element. The main constituent of the element being synthesized zeolite and metal silicate aerogel deposited on the inorganic fiber matrix.