Abstract:
A robotic attacher includes a main arm that is suspended vertically from a rail, and a supplemental arm that is coupled to and extends horizontally from the main arm along a longitudinal axis. The supplemental arm includes a pivot assembly that pivots a gripping portion around a vertical axis that is substantially parallel to the main arm of the robotic attacher, in a direction transverse to the longitudinal direction of the supplemental arm, and between at least a maximum-left position, a maximum-right position, and a centered position. The pivot assembly includes a first actuator that extends and retracts a first cable coupled to a left side of the gripping portion in order to pivot the gripping portion. The pivot assembly further includes a second actuator that extends and retracts a second cable coupled to a right side of the gripping portion in order to pivot the gripping portion.
Abstract:
A spray tool coupled to a robotic arm includes a linear member, a first spray nozzle and a second spray nozzle. The linear member rotates about an axis that is perpendicular to the robotic arm. The linear member has a perimeter that lies within an outer perimeter of the robotic arm when the robotic arm extends between the legs of a dairy livestock. The first spray nozzle is coupled to the linear member proximate a first end of the linear member. The second spray nozzle is coupled to the linear member proximate a second end of the linear member.
Abstract:
A robotic attacher comprises a main arm, a supplemental arm coupled to the main arm, and a gripping portion coupled to the supplemental arm. The gripping portion is operable to rotate such that at a first time, a nozzle is positioned generally on the bottom of the gripping portion, and at a second time, the nozzle is positioned generally on the top of the gripping portion.
Abstract:
A robotic attacher retrieves a preparation cup from an equipment area located behind a dairy livestock and attaches and detaches the preparation cup to the teats of the dairy livestock in sequence. The sequence comprises attaching and detaching the preparation cup to the left front teat, the right front teat, the right rear teat, and the left rear teat.
Abstract:
A method comprises receiving a flow of milk at an inlet of a manifold. The inlet comprises a first end coupled to a hose that receives a flow of milk from a teat cup and a second end terminating in a chamber of the manifold. The manifold comprises one or more other inlets and a plurality of outlets. The plurality of outlets includes one or more milk collector outlets and one or more drain outlets. The method proceeds by causing the flow of milk to be directed to a corresponding milk collector outlet by causing a shut-off valve corresponding to the inlet to open, and by causing a drain valve corresponding to the inlet to close. The method concludes by causing the flow of milk to be directed to a corresponding drain outlet by causing the drain valve corresponding to the inlet to open.
Abstract:
A system comprises a memory and a processor. The memory stores information about a milking stall where a dairy livestock is located at a first time, and a coordinate location of the dairy livestock at a second time. The processor is communicatively coupled to the memory and determines if the coordinate location of the dairy livestock at the second time is different than the milking stall where the dairy livestock is located at the first time. If the coordinate location where the dairy livestock is located at the second time is not the milking stall, the processor generates an error flag associated with the dairy livestock.
Abstract:
A system includes a milking box and a robotic arm. The milking box comprises a stall portion that houses a dairy livestock with four teats. The robotic arm performs the following operation for a plurality of teats of the dairy livestock: retrieves a cup; attaches the cup to a teat; and detaches the cup from the teat. The cup is maintained within the stall portion of the milking box from the time that the cup is attached to a first teat of the dairy livestock through the time that the cup is attached to a last teat of the dairy livestock. The cup is retracted into an equipment area of the milking box after it is detached from the last teat of the dairy livestock.
Abstract:
A system comprises a milking box, a robotic attacher, a sensor, and a controller. The milking box has a stall to accommodate a dairy livestock. The stall comprises a first exit gate on a first side of the stall leading to a first sorting region and a second exit gate on a second side of the stall leading to a second sorting region. The robotic attacher extends from the rear between the hind legs of the dairy livestock, move in at least one direction along the x-axis, y-axis, and z-axis, and attach milking equipment to the dairy livestock. The sensor identifies the dairy livestock within the milking box stall. The controller selects and opens the first exit gate or the second exit gate based at least in part upon the identity of the dairy livestock in order to direct the first dairy livestock into either the first sorting region or the second sorting region.
Abstract:
A system includes a carriage track positioned adjacent to a rotary milking platform, a robot carriage positioned on the carriage track such that the robot carriage may move along the carriage track, and a controller. The controller determines a movement of a milking stall of the rotary milking platform from a first rotational position to a second rotational position. The controller further determines a position of the robot carriage on the carriage track corresponding to the movement of the milking stall of the rotary milking platform. The controller also communicates a position signal to a carriage actuator coupled to the robot carriage and the carriage track. The position signal causes the carriage actuator to move the robot carriage along the carriage track to the determined position in conjunction with the movement of the rotary milking platform.
Abstract:
A method for applying disinfectant to the teats of a dairy livestock, comprises moving a carriage along a track. The carriage carries a robotic arm and the track is adjacent to a stall of a rotary milking platform housing a dairy livestock. The robotic arm comprises a first member pivotally attached to the carriage, a second member pivotally attached to the first member, and a spray tool member pivotally attached to the second member. The method continues by extending the robotic arm between the hind legs of the dairy livestock while the rotary milking platform rotates such that a spray tool of the spray tool member is located at a spray position from which the spray tool may discharge disinfectant to the teats of the dairy livestock.