Abstract:
Embodiments of the present invention provide improvements to printers including the use of engineered structures to limit bending, flexing, and/or twisting during impacts and the use of impact absorbing materials to prevent cracks and breaks. Design features and materials add to the rigidity of the printer design to prevent twisting and flexing during impacts and add to the strength of the printer design in typical breakage areas. For example, embodiments provide improvements that strengthen traditional break areas by the use of improved materials and design optimization to distribute impact forces. Embodiments allow the printer to maintain an operational status following a drop test and/or a tumble test.
Abstract:
An XML system is configured to encode RFID devices embedded in media, based upon an extensible markup language (XML) input data stream. The computer system further includes an XML processor configured to receive and process a format template, associate the XML data contained in the XML input data stream and the format template, a formatting engine configured to format the associated XML data according to a format governed by the format template, and/or generate encoding information for an RFID device.
Abstract:
An example device for providing device information to a device management infrastructure includes a memory subsystem; a communication interface to: receive, from a first device, first device information in a first device-native format; receive, from a second device, second device information in a second device-native format different than the first device-native format; transmit the first device information to a remote server in a device-agnostic format; and transmit the second device information to the remote server in the device-agnostic format; and a device information processor to convert the first device information and the second device information into the device-agnostic format.
Abstract:
An RFID communication system comprising a near field coupler that is capable of selectively communicating with a targeted transponder positioned among a group of multiple adjacent transponders. The coupler is configured to receive communication signals from a transceiver and transmit the signals to a targeted transponder in a transponder operating region. The coupler includes a number of radiating elements spaced apart and a switching element. The switching element selectively couples one or more of the radiating elements to the transceiver. The coupled elements transmit the signals into the transponder operating region by emanating a near field effect. The pattern of the near field effect may be adjusted by changing the combination of the coupled radiating elements.
Abstract:
Provided herein are devices, systems, methods and various means, including those related to printer systems and, more particularly, relate to methods, apparatuses, systems and other means for monitoring a printer ribbon. Some embodiments use a multi-element detector, which is configured to detect a particular type of light emitted from a light emitter. The multi-state detector can include two sensors, one of which includes a polarizer filter that blocks polarized light. Embodiments can be used to determine, among other things, whether or not a printer ribbon is installed in a printer without the use of a snap plate.
Abstract:
Provided is thermally imagable media in which selected areas may be thermally activated to change color. The thermally imagable media includes a substrate having a first and second surface, the first surface supporting a thermally imagable coating, an extender coating, and a top coating such that when activated the thermally imagable coating produces a visible color. The thermally imagable media is activated in a direct thermal printer.
Abstract:
A device for processing media may include a front panel, a rear panel, a side panel, a support surface, and an access door assembly. The access door assembly may be pivotally coupled to the support surface and may include a major door pivotally coupled to a minor door. The minor door may be movable from an operational position to a minor support position and the major door may be movable from the operational position to a major support position in which the major door is positioned against and supported by the support surface. The side panel may define an imaginary plane that extends upward beyond the support surface and the access door assembly may be sized to be supported on the support surface without crossing the imaginary plane.
Abstract:
Provided herein are devices, methods and other means, including those related to printers, as well as computer readable media for storing code to execute instructions for a device, and other systems for providing and supporting mobile printing and other types of devices. The printer, for example, can be coupled with one or more docks and/or other accessory devices, examples of which are also discussed herein.
Abstract:
Embodiments of the present invention provide methods for an electrical-mechanical interface associated with a miniature RTLS tag, wherein a mechanical shock absorption comprises a protective antenna enclosure and a potting material to secure the electronics to printed circuit boards. A polyester cup seal prevents the potting material from interacting electrically with an RF antenna. A signal processor is electrically isolated from the antenna by a RF shield or metal can. The cup seal is vacuum-sealed about the RF shield. Flexibility in radiation patterns for the antenna is made possible by eliminating the electrical interactions of the dielectric materials associated with mechanical shock absorption and the antenna. The antenna is approximately circular, with a coaxial center feed through the antenna aperture, and is perturbed by purposeful metal and dielectric adjustments to generate nearly omni-directional radiation patterns in elevation and azimuth.
Abstract:
A printer may include a printhead assembly a clutch assembly, and/or a printer ribbon transport assembly. The printhead assembly may include a printhead biasing assembly defining a biasing ramp which may be configured to apply a biasing force to a printhead support bracket so as to at least partially counteract a ribbon force. The clutch assembly may be configured to supply or take-up a printer ribbon with first and second spool engagement members of different diameters that frictionally engage first and second friction members. The printer ribbon transport assembly may include a rotation lock mechanism configured to prevent rotation of a ribbon take-up core when the take-up core is disengaged from a drive assembly so as to prevent a loss in ribbon tension.