Abstract:
Decomposing a value range of the respective syntax elements into a sequence of n partitions with coding the components of z laying within the respective partitions separately with at least one by VLC coding and with at least one by PIPE or entropy coding is used to greatly increase the compression efficiency at a moderate coding overhead since the coding scheme used may be better adapted to the syntax element statistics. Accordingly, syntax elements are decomposed into a respective number n of source symbols si with i=1 . . . n, the respective number n of source symbols depending on as to which of a sequence of n partitions into which a value range of the respective syntax elements is sub-divided, a value z of the respective syntax elements falls into, so that a sum of values of the respective number of source symbols si yields z, and, if n>1, for all i=1 . . . n−1, the value of si corresponds to a range of the ith partition.
Abstract:
A higher coding efficiency for coding a significance map indicating positions of significant transform coefficients within a transform coefficient block is achieved by the scan order by which the sequentially extracted syntax elements indicating, for associated positions within the transform coefficient block, as to whether at the respective position a significant or insignificant transform coefficient is situated, are sequentially associated to the positions of the transform coefficient block, among the positions of the transform coefficient block depends on the positions of the significant transform coefficients indicated by previously associated syntax elements. Alternatively, the first-type elements may be context-adaptively entropy decoded using contexts which are individually selected for each of the syntax elements dependent on a number of significant transform coefficients in a neighborhood of the respective syntax element, indicated as being significant by any of the preceding syntax elements.
Abstract:
A coding efficiency increase is achieved by using a common signalization within the bitstream with regard to activation of merging and activation of the skip mode. One possible state of one or more syntax elements within the bitstream may signalize for a current sample set of a picture that the sample set is to be merged and has no prediction residual encoded and inserted into the bitstream. A common flag may signalize whether the coding parameters associated with a current sample set are to be set according to a merge candidate or to be retrieved from the bitstream, and whether the current sample set of the picture is to be reconstructed based on a prediction signal depending on the coding parameters associated with the current sample set, without any residual data, or to be reconstructed by refining the prediction signal depending on the coding parameters associated with the current sample set by means of residual data within the bitstream.
Abstract:
A better rate distortion ratio is achieved by making interrelationships between coding parameters of different planes available for exploitation for the aim of redundancy reduction despite the additional overhead resulting from the need to signal the inter-plane prediction information to the decoder. In particular, the decision to use inter plane prediction or not may be performed for a plurality of planes individually. Additionally or alternatively, the decision may be done on a block basis considering one secondary plane.
Abstract:
Information available from coding/decoding the base layer, i.e. base-layer hints, is exploited to render the motion-compensated prediction of the enhancement layer more efficient by more efficiently coding the enhancement layer motion parameters.
Abstract:
A subblock-based coding of transform coefficient blocks of the enhancement layer is rendered more efficient. To this end, the subblock subdivision of the respective transform coefficient block is controlled on the basis of the base layer residual signal or the base layer signal. In particular, by exploiting the respective base layer hint, the subblocks may be made longer along a spatial frequency axis transverse to edge extensions observable from the base layer residual signal or the base layer signal.