Abstract:
A magnetic component and a method for manufacturing a low profile, magnetic component. The method comprises the steps of providing at least one sheet, coupling at least a portion of at least one winding to the at least one sheet, and laminating the at least one sheet with at least a portion of the at least one winding. The magnetic component comprises at least one sheet and at least a portion of at least one winding coupled to the at least one sheet, wherein the at least one sheet is laminated to at least a portion of the at least one winding. The winding may comprise a clip, a preformed coil, a stamped conductive foil, or an etched trace using chemical or laser etching. The sheet may comprise any material capable of being laminated and/or rolled, including, but not limited to, flexible magnetic powder sheets.
Abstract:
An electrical box described herein allows for separate wire connection areas for low voltage and line voltage wiring within a single box. The electrical box includes a voltage divider positioned within the box that divides the box into two distinct portions, thereby providing a low voltage wiring connection area that is separate from the line voltage wiring connection area. The electrical box also includes multiple knockouts, each covering an opening that provides a passageway from the interior of the box to the exterior of the box. At least one knockout and associated opening are positioned to provide access to the low voltage wiring connection area and another knockout and associate opening is positioned along to the box to provide access to the line voltage wiring connection area. The box provides an electrical junction for a luminaire, such as a downlight, or other electrical device.
Abstract:
Lighting assemblies or lighting fixtures suitable for use in a hazardous location are provided. Generally, the lighting fixtures include a light source assembly, a heat sink, a driver housing or gear module, and a conductive sealing member between the light source assembly and the heat sink. The conductive sealing member has a thermal conductivity of at least about 6 Watts per meter-Kelvin, and/or a thermal impedance of less than about 0.21 degree-C. inch squared per Watt. The lighting fixtures have controlled directional heat transfer from the light source assembly to the exterior of the lighting fixture, while minimizing the heat transferred to the driver housing.
Abstract:
Auto-detection and configuring systems and methods for interconnected, position dependent control devices are disclosed. Embedded identification and configuration keys are associated with each of the control devices in a network, such that specific connection nodes for each controller may be determined by electronically reading the identification as the control devices are installed. Hardware and software compatibility issues may be detected and resolved, including self configuring of the control devices with the proper software where possible. Otherwise, error conditions are signaled.
Abstract:
A recessed light fixture includes an LED module, which includes a single LED package that is configured to generate all light emitted by the recessed light fixture. For example, the LED package can include multiple LEDs mounted to a common substrate. The LED package can be coupled to a heat sink for dissipating heat from the LEDs. The heat sink can include a core member from which fins extend. Each fin can include one or more straight and/or curved portions. A reflector housing may be coupled to the heat sink and configured to receive a reflector. The reflector can have any geometry, such as a bell-shaped geometry including two radii of curvature that join together at an inflection point. An optic coupler can be coupled to the reflector housing and configured to cover electrical connections at the substrate and to guide light emitted by the LED package.
Abstract:
A recessed light fixture includes an LED module, which includes a single LED package that is configured to generate all light emitted by the recessed light fixture. For example, the LED package can include multiple LEDs mounted to a common substrate. The LED package can be coupled to a heat sink for dissipating heat from the LEDs. The heat sink can include a core member from which fins extend. Each fin can include one or more straight and/or curved portions. A reflector housing may be coupled to the heat sink and configured to receive a reflector. The reflector can have any geometry, such as a bell-shaped geometry including two radii of curvature that join together at an inflection point. An optic coupler can be coupled to the reflector housing and configured to cover electrical connections at the substrate and to guide light emitted by the LED package.
Abstract:
A device includes a cover that includes a base. The cover is configured to be positioned over a mount that couples a support structure of an electrical device to another element. The electrical device includes an energized terminal that is configured to connect to an electrical power system and a grounded terminal. The device also includes an insulating interface coupled to the base of the cover such that, when the cover is positioned over the mount, the interface contacts the support structure to substantially electrically insulate the mount. A system includes an electrical device, a support structure that holds the electrical device on the first side, a mount configured to couple the structure to another element, the mount being grounded during operation of the system, and a protective device positioned over the mount.
Abstract:
A motion detector system includes the ability to detect motion through the use of a Doppler radar sensor or a combination of PIR sensors and a Doppler radar sensor. The system includes an outdoor light fixture having one or more lamps and a housing coupled to the outdoor light fixture. The housing includes a Doppler radar sensor and a microprocessor for analyzing the signals received by the Doppler radar sensor. Alternatively, the housing includes a combination of PIR sensors and a Doppler radar sensor and a microprocessor for analyzing the signals received from these sensors. The lamps in the light fixture are activated when either the PIR sensor or the Doppler radar sensor generates a signal indicating motion within the monitored area. Alternatively, the lamps can be activated when either the PIR sensor or the Doppler radar sensor senses predetermined number of motion activities over a limited time period.
Abstract:
A door assembly for an equipment rack. A unitary frame includes an upper horizontal member, a left-hand vertical member, and a right-hand vertical member. A left-hand door is pivotally mounted on the left-hand vertical member for movement between an open position, in which equipment is accessible through a left-hand portion of the frame, and a closed position, in which access to equipment through the left-hand portion is blocked by the left-hand door. A right-hand door is pivotally mounted on the right-hand vertical member for movement between an open position, in which equipment is accessible through a right-hand portion of the frame, and a closed position, in which access to equipment through the right-hand portion is blocked by the right-hand door. A locking mechanism locks the left-hand door and the right-hand door in their respective closed positions, thereby blocking access to the equipment through the frame.